An interview with Wallapak Tavanapong

Wallapak Tavanapong was interviewed by Michael Riegler.

Wallapak Tavanapong is a Professor of Computer Science at Iowa State University and long-term ACM SIGMM member.

Wallapak Tavanapong received the B.S. degree in Computer Science from Thammasat University, Thailand in 1992 and the M.S. and Ph.D. degrees in Computer Science from the University of Central Florida in 1995 and 1999, respectively. She joined Iowa State University in 1999 and is currently a Professor of Computer Science. She is a co-founder and a Chief Technology Officer of EndoMetric, a software company that offers computer-aided technology for colonoscopy. She received a National Science Foundation Career grant, the 2006 American College of Gastroenterology Governors Award for Excellence in Clinical Research for “The Best Scientific Paper”, and a US patent on Colonoscopy Video Processing for Quality Metrics Determination. Her current research interests include multimedia in healthcare, high performance multimedia computing, multimedia and databases, multimedia and communications, electronic medical records, and databases. Her research has been supported by National Science Foundation, Agency for Healthcare Research and Quality, the National Institute of Diabetes and Digestive and Kidney Diseases, Mayo Clinic Rochester, Iowa Department of Economic Development, and EndoMetric. She has served as an editorial board member for ACM SIGMOD Digital Symposium Collection, an NSF panel reviewer, a program committee member for international conferences, and a referee for conferences and reputable journals.

Michael Alexander Riegler is a PhD student at Simula Research Laboratory. He received his master degree from the Klagenfurt University with distinction. His master thesis was about large scale content based image retrieval. He wrote it at the Technical University of Delft under the supervision of Martha Larson. He is a part of the EONS project and the DigSys pre-project at the Media Performance Group. His research interests are endoscopic video analysis and understanding, image processing, image retrieval, parallel processing, gamification and serious games, crowdsourcing, social computing and user intentions. Furthermore he is involved in several initiatives like the MediaEval Benchmarking initiative for Multimedia Evaluation.

MR: Describe your journey into computing from your youth up to the present.

Wallapak Tavanapong

Wallapak Tavanapong

Pak: I started learning about computing quite late. I did not know what a computer was until I joined a B.S. degree program in Computer Science at Thammasat University, Thailand, and learned the foundation there. After finishing the degree, I joined the M.S. program in Computer Science at the University of Central Florida (UCF), Orlando, Florida, USA. UCF was a great learning place for me. I had a wonderful advisor, Prof. Kien A. Hua, good classes, and great friends. My research at the time was video-on-demand, which was a hot topic then. After my Ph.D., I joined the Department of Computer Science at Iowa State University in 1999 as an Assistant Professor and was promoted to a Full Professor recently.

Iowa State University is a great place for my career. In the beginning, I continued on with the research in video-on-demand and multimedia caching. In 2003, my colleagues, Profs. JungHwan Oh, Piet C. de Groen, Johnny Wong, and I began investigating automated content analysis of endoscopic video for improving quality of the procedure. At the time, few works exist and mostly were on automated detection of polyp appearance in images. Our approach is to automatically analyze an entire procedure, calculate detailed objective metrics that reflect quality of inspection for the entire procedure, and provide real-time feedback to assist the endoscopist to improve the quality. We co-founded EndoMetric Corporation to transfer the technology into practice. I am glad that this research area receives much more attention now both in academia and industry. I am glad that our work has some influence on later work. In 2013, I began new interdisciplinary research and education initiatives in political informatics and computation communication and advertising.

MR: What foundational lessons did you learn from this journey?

Pak:

First, never give up when facing difficulty. Second, there are several paths toward good research. I am more attracted to research problems in a different discipline. I like to create a new computing research problem out of vague problem descriptions in other disciplines. I love interdisciplinary research.

MR: Why were you initially attracted to multimedia?

Pak:

My initial interest was in database research. As data began to come in different media types, extension to multimedia was natural.

MR: Tell us more about your vision and objectives behind your current roles? What do you hope to accomplish and how will you bring this about?

Pak:

First, I’d like to see my research helps to prevent or reduce suffering from cancer for many. To achieve this goal, I need to do more to push my technology into practice. Second, I’d like to see computational thinking integrated into science and math curriculum in elementary schools in the US and other countries soon. Over the past five years, I have been engaging in our departmental K-12 outreach activities, coaching K-12 kids and interested K-12 teachers in computational thinking. I’d like to see more women in computer science and computing fields. In our K-12 outreach program, we found that young girls started losing their interest in science as early as the fifth grade. So, I hope to get them interested in computing early in the third grade. Last, I’d like to see that my interdisciplinary work with political scientists and communication scholars leads to a national social multimedia repository that is useful for social scientists and the public to learn about decision making in public policies that affect many lives.

MR: Can you profile your current research, its challenges, opportunities, and implications?

Pak: My top two projects are

  • Reconstruction of a virtual colon from 2D colonoscopic images:

    The human colon is a complex tubular structure with multiple twists and turns. A good colon exam increases early detection of colorectal cancer. I’d like to provide a 3D colon inspection map during the procedure for the endoscopist to know which areas inside the colon that they might have missed. There are many challenges. The most critical one is that commonly used endoscopes are not equipped with 3D camera positioning technology. I am working to add low-cost hardware equipment that provides some position information. I will utilize the position together with content analysis of endoscopic images to reconstruct the virtual colon. The work has a potential to increase the polyp detection rate during colonoscopy, preventing deaths and reducing pain and suffering.

  • Multimedia information system for political science and communication:

    This system would help answering research questions in political science and communication that could not have been answered before because of the sheer volume, variety, and velocity of data. Specifically, my team is working on understanding how states learn about policies from one another, how news reporters carry information from state legislatures to the public, how a public policy is influenced, etc. This is an application domain that lends itself to multimedia research, ranging from the underlying data management technology, automated content analysis of multiple media types and sources: web and video online ads, TV ads, state bills and laws, and tweets by political figures, to visualization of the resulting knowledge from the analysis.

MR: How would you describe the role of women especially in the field of multimedia?

Pak: I think the role of women in multimedia is same as men. But our number is much lower. We need to increase the number of women in the field. I believe that we need to get young girls interested in computing as early as elementary school.

MR: How would you describe your top innovative achievements in terms of the problems you were trying to solve, your solutions, and the impact it has today and into the future?

Pak: I would say that my top achievement so far is in the idea and the realization of real-time computer-aided analysis and feedback to improve quality of colonoscopy. We were the first to investigate this problem. There are several challenges, for instance, defining what to analyze that reflect quality as seen by the domain experts, coming up with effective algorithms to compute the quality measurements, showing that the automated measurement indeed improves quality, making the automated analysis real-time, effective, and low cost to be used in practice, deploying the technology for daily use in hospitals and clinics.

My technology has already saved a couple of lives and I would like it to do more in the future. I have seen more researchers in academia and industry get into this research area, which is great. We need more researchers and developers in multimedia and healthcare to help medical professions improve quality of care via automation.

MR: Over your distinguished career, what are your top lessons you want to share with the audience?

Pak: Never give up. Find good mentors who care about you, believe in you, and give you different perspectives. A peer mentor is great. I learn a lot from my colleagues. Find a research problem you are passionate about. Last, when realizing that there is a problem, do not complain, look for a good solution, and fix it.

 

Bookmark the permalink.