About Christian Timmerer

Christian Timmerer is a researcher, entrepreneur, and teacher on immersive multimedia communication, streaming, adaptation, and Quality of Experience. He is an Assistant Professor at Alpen-Adria-Universität Klagenfurt, Austria. Follow him on Twitter at http://twitter.com/timse7 and subscribe to his blog at http://blog.timmerer.com.

MPEG Column: 145th MPEG Meeting (Virtual/Online)

The 145th MPEG meeting was held online from 22-26 January 2024, and the official press release can be found here. It comprises the following highlights:

  • Latest Edition of the High Efficiency Image Format Standard Unveils Cutting-Edge Features for Enhanced Image Decoding and Annotation
  • MPEG Systems finalizes Standards supporting Interoperability Testing
  • MPEG finalizes the Third Edition of MPEG-D Dynamic Range Control
  • MPEG finalizes the Second Edition of MPEG-4 Audio Conformance
  • MPEG Genomic Coding extended to support Transport and File Format for Genomic Annotations
  • MPEG White Paper: Neural Network Coding (NNC) – Efficient Storage and Inference of Neural Networks for Multimedia Applications

This column will focus on the High Efficiency Image Format (HEIF) and interoperability testing. As usual, a brief update on MPEG-DASH et al. will be provided.

High Efficiency Image Format (HEIF)

The High Efficiency Image Format (HEIF) is a widely adopted standard in the imaging industry that continues to grow in popularity. At the 145th MPEG meeting, MPEG Systems (WG 3) ratified its third edition, which introduces exciting new features, such as progressive decoding capabilities that enhance image quality through a sequential, single-decoder instance process. With this enhancement, users can decode bitstreams in successive steps, with each phase delivering perceptible improvements in image quality compared to the preceding step. Additionally, the new edition introduces a sophisticated data structure that describes the spatial configuration of the camera and outlines the unique characteristics responsible for generating the image content. The update also includes innovative tools for annotating specific areas in diverse shapes, adding a layer of creativity and customization to image content manipulation. These annotation features cater to the diverse needs of users across various industries.

Research aspects: Progressive coding has been a part of modern image coding formats for some time now. However, the inclusion of supplementary metadata provides an opportunity to explore new use cases that can benefit both user experience (UX) and quality of experience (QoE) in academic settings.

Interoperability Testing

MPEG standards typically comprise format definitions (or specifications) to enable interoperability among products and services from different vendors. Interestingly, MPEG goes beyond these format specifications and provides reference software and conformance bitstreams, allowing conformance testing.

At the 145th MPEG meeting, MPEG Systems (WG 3) finalized two standards comprising conformance and reference software by promoting it to the Final Draft International Standard (FDIS), the final stage of standards development. The finalized standards, ISO/IEC 23090-24 and ISO/IEC 23090-25, showcase the pinnacle of conformance and reference software for scene description and visual volumetric video-based coding data, respectively.

ISO/IEC 23090-24 focuses on conformance and reference software for scene description, providing a comprehensive reference implementation and bitstream tailored for conformance testing related to ISO/IEC 23090-14, scene description. This standard opens new avenues for advancements in scene depiction technologies, setting a new standard for conformance and software reference in this domain.

Similarly, ISO/IEC 23090-25 targets conformance and reference software for the carriage of visual volumetric video-based coding data. With a dedicated reference implementation and bitstream, this standard is poised to elevate the conformance testing standards for ISO/IEC 23090-10, the carriage of visual volumetric video-based coding data. The introduction of this standard is expected to have a transformative impact on the visualization of volumetric video data.

At the same 145th MPEG meeting, MPEG Audio Coding (WG6) celebrated the completion of the second edition of ISO/IEC 14496-26, audio conformance, elevating it to the Final Draft International Standard (FDIS) stage. This significant update incorporates seven corrigenda and five amendments into the initial edition, originally published in 2010.

ISO/IEC 14496-26 serves as a pivotal standard, providing a framework for designing tests to ensure the compliance of compressed data and decoders with the requirements outlined in ISO/IEC 14496-3 (MPEG-4 Audio). The second edition reflects an evolution of the original, addressing key updates and enhancements through diligent amendments and corrigenda. This latest edition, now at the FDIS stage, marks a notable stride in MPEG Audio Coding’s commitment to refining audio conformance standards and ensuring the seamless integration of compressed data within the MPEG-4 Audio framework.

These standards will be made freely accessible for download on the official ISO website, ensuring widespread availability for industry professionals, researchers, and enthusiasts alike.

Research aspects: Reference software and conformance bitstreams often serve as the basis for further research (and development) activities and, thus, are highly appreciated. For example, reference software of video coding formats (e.g., HM for HEVC, VM for VVC) can be used as a baseline when improving coding efficiency or other aspects of the coding format.

MPEG-DASH Updates

The current status of MPEG-DASH is shown in the figure below.

MPEG-DASH Status, January 2024.

The following most notable aspects have been discussed at the 145th MPEG meeting and adopted into ISO/IEC 23009-1, which will eventually become the 6th edition of the MPEG-DASH standard:

  • It is now possible to pass CMCD parameters sid and cid via the MPD URL.
  • Segment duration patterns can be signaled using SegmentTimeline.
  • Definition of a background mode of operation, which allows a DASH player to receive MPD updates and listen to events without possibly decrypting or rendering any media.

Additionally, the technologies under consideration (TuC) document has been updated with means to signal maximum segment rate, extend copyright license signaling, and improve haptics signaling in DASH. Finally, REAP is progressing towards FDIS but not yet there and most details will be discussed in the upcoming AhG period.

The 146th MPEG meeting will be held in Rennes, France, from April 22-26, 2024. Click here for more information about MPEG meetings and their developments.

MPEG Column: 144th MPEG Meeting in Hannover, Germany

The 144th MPEG meeting was held in Hannover, Germany! For those interested, the press release is available with all the details. It’s great to see progress being made in person (cf. also the group pictures below). The main outcome of this meeting is as follows:

  • MPEG issues Call for Learning-Based Video Codecs for Study of Quality Assessment
  • MPEG evaluates Call for Proposals on Feature Compression for Video Coding for Machines
  • MPEG progresses ISOBMFF-related Standards for the Carriage of Network Abstraction Layer Video Data
  • MPEG enhances the Support of Energy-Efficient Media Consumption
  • MPEG ratifies the Support of Temporal Scalability for Geometry-based Point Cloud Compression
  • MPEG reaches the First Milestone for the Interchange of 3D Graphics Formats
  • MPEG announces Completion of Coding of Genomic Annotations

We have modified the press release to cater to the readers of ACM SIGMM Records and highlighted research on video technologies. This edition of the MPEG column focuses on MPEG Systems-related standards and visual quality assessment. As usual, the column will end with an update on MPEG-DASH.

Attendees of the 144th MPEG meeting in Hannover, Germany.

Visual Quality Assessment

MPEG does not create standards in the visual quality assessment domain. However, it conducts visual quality assessments for its standards during various stages of the standardization process. For instance, it evaluates responses to call for proposals, conducts verification tests of its final standards, and so on. MPEG Visual Quality Assessment (AG 5) issued an open call to study quality assessment for learning-based video codecs. AG 5 has been conducting subjective quality evaluations for coded video content and studying their correlation with objective quality metrics. Most of these studies have focused on the High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) standards. To facilitate the study of visual quality, MPEG maintains the Compressed Video for the study of Quality Metrics (CVQM) dataset.

With the recent advancements in learning-based video compression algorithms, MPEG is now studying compression using these codecs. It is expected that reconstructed videos compressed using learning-based codecs will have different types of distortion compared to those induced by traditional block-based motion-compensated video coding designs. To gain a deeper understanding of these distortions and their impact on visual quality, MPEG has issued a public call related to learning-based video codecs. MPEG is open to inputs in response to the call and will invite responses that meet the call’s requirements to submit compressed bitstreams for further study of their subjective quality and potential inclusion into the CVQM dataset.

Considering the rapid advancements in the development of learning-based video compression algorithms, MPEG will keep this call open and anticipates future updates to the call.

Interested parties are kindly requested to contact the MPEG AG 5 Convenor Mathias Wien (wien@lfb.rwth- aachen.de) and submit responses for review at the 145th MPEG meeting in January 2024. Further details are given in the call, issued as AG 5 document N 104 and available from the mpeg.org website.

Research aspects: Learning-based data compression (e.g., for image, audio, video content) is a hot research topic. Research on this topic relies on datasets offering a set of common test sequences, sometimes also common test conditions, that are publicly available and allow for comparison across different schemes. MPEG’s Compressed Video for the study of Quality Metrics (CVQM) dataset is such a dataset, available here, and ready to be used also by researchers and scientists outside of MPEG. The call mentioned above is open for everyone inside/outside of MPEG and allows researchers to participate in international standards efforts (note: to attend meetings, one must become a delegate of a national body).

MPEG Systems-related Standards

At the 144th MPEG meeting, MPEG Systems (WG 3) produced three news-worthy items as follows:

  • Progression of ISOBMFF-related standards for the carriage of Network Abstraction Layer (NAL) video data.
  • Enhancement of the support of energy-efficient media consumption.
  • Support of temporal scalability for geometry-based Point Cloud Compression (PPC).

ISO/IEC 14496-15, a part of the family of ISOBMFF-related standards, defines the carriage of Network Abstract Layer (NAL) unit structured video data such as Advanced Video Coding (AVC), High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), Essential Video Coding (EVC), and Low Complexity Enhancement Video Coding (LCEVC). This standard has been further improved with the approval of the Final Draft Amendment (FDAM), which adds support for enhanced features such as Picture-in-Picture (PiP) use cases enabled by VVC.

In addition to the improvements made to ISO/IEC 14496-15, separately developed amendments have been consolidated in the 7th edition of the standard. This edition has been promoted to Final Draft International Standard (FDIS), marking the final milestone of the formal standard development.

Another important standard in development is the 2nd edition of ISO/IEC14496-32 (file format reference software and conformance). This standard, currently at the Committee Draft (CD) stage of development, is planned to be completed and reach the status of Final Draft International Standard (FDIS) by the beginning of 2025. This standard will be essential for industry professionals who require a reliable and standardized method of verifying the conformance of their implementation.

MPEG Systems (WG 3) also promoted ISO/IEC 23001-11 (energy-efficient media consumption (green metadata)) Amendment 1 to Final Draft Amendment (FDAM). This amendment introduces energy-efficient media consumption (green metadata) for Essential Video Coding (EVC) and defines metadata that enables a reduction in decoder power consumption. At the same time, ISO/IEC 23001-11 Amendment 2 has been promoted to the Committee Draft Amendment (CDAM) stage of development. This amendment introduces a novel way to carry metadata about display power reduction encoded as a video elementary stream interleaved with the video it describes. The amendment is expected to be completed and reach the status of Final Draft Amendment (FDAM) by the beginning of 2025.

Finally, MPEG Systems (WG 3) promoted ISO/IEC 23090-18 (carriage of geometry-based point cloud compression data) Amendment 1 to Final Draft Amendment (FDAM). This amendment enables the compression of a single elementary stream of point cloud data using ISO/IEC 23090-9 (geometry-based point cloud compression) and storing it in more than one track of ISO Base Media File Format (ISOBMFF)-based files. This enables support for applications that require multiple frame rates within a single file and introduces a track grouping mechanism to indicate multiple tracks carrying a specific temporal layer of a single elementary stream separately.

Research aspects: MPEG Systems usually provides standards on top of existing compression standards, enabling efficient storage and delivery of media data (among others). Researchers may use these standards (including reference software and conformance bitstreams) to conduct research in the general area of multimedia systems (cf. ACM MMSys) or, specifically on green multimedia systems (cf. ACM GMSys).

MPEG-DASH Updates

The current status of MPEG-DASH is shown in the figure below with only minor updates compared to the last meeting.

MPEG-DASH Status, October 2023.

In particular, the 6th edition of MPEG-DASH is scheduled for 2024 but may not include all amendments under development. An overview of existing amendments can be found in the column from the last meeting. Current amendments have been (slightly) updated and progressed toward completion in the upcoming meetings. The signaling of haptics in DASH has been discussed and accepted for inclusion in the Technologies under Consideration (TuC) document. The TuC document comprises candidate technologies for possible future amendments to the MPEG-DASH standard and is publicly available here.

Research aspects: MPEG-DASH has been heavily researched in the multimedia systems, quality, and communications research communities. Adding haptics to MPEG-DASH would provide another dimension worth considering within research, including, but not limited to, performance aspects and Quality of Experience (QoE).

The 145th MPEG meeting will be online from January 22-26, 2024. Click here for more information about MPEG meetings and their developments.

MPEG Column: 143rd MPEG Meeting in Geneva, Switzerland

The 143rd MPEG meeting took place in person in Geneva, Switzerland. The official press release can be accessed here and includes the following details:

  • MPEG finalizes the Carriage of Uncompressed Video and Images in ISOBMFF
  • MPEG reaches the First Milestone for two ISOBMFF Enhancements
  • MPEG ratifies Third Editions of VVC and VSEI
  • MPEG reaches the First Milestone of AVC (11th Edition) and HEVC Amendment
  • MPEG Genomic Coding extended to support Joint Structured Storage and Transport of Sequencing Data, Annotation Data, and Metadata
  • MPEG completes Reference Software and Conformance for Geometry-based Point Cloud Compression

We have adjusted the press release to suit the audience of ACM SIGMM and emphasized research on video technologies. This edition of the MPEG column centers around ISOBMFF and video codecs. As always, the column will conclude with an update on MPEG-DASH.

ISOBMFF Enhancements

The ISO Base Media File Format (ISOBMFF) supports the carriage of a wide range of media data such as video, audio, point clouds, haptics, etc., which has now been further extended to uncompressed video and images.

ISO/IEC 23001-17 – Carriage of uncompressed video and images in ISOBMFF – specifies how uncompressed 2D image and video data is carried in files that comply with the ISOBMFF family of standards. This encompasses a range of data types, including monochromatic and colour data, transparency (alpha) information, and depth information. The standard enables the industry to effectively exchange uncompressed video and image data while utilizing all additional information provided by the ISOBMFF, such as timing, color space, and sample aspect ratio for interoperable interpretation and/or display of uncompressed video and image data.

ISO/IEC 14496-15 (based on ISOBMFF) provides the basis for “network abstraction layer (NAL) unit structured video coding formats” such as AVC, HEVC, and VVC. The current version is the 6th edition, which has been amended to support neural-network post-filter supplemental enhancement information (SEI) messages. This amendment defines the carriage of the neural-network post-filter characteristics (NNPFC) SEI messages and the neural-network post-filter activation (NNPFA) SEI messages to enable the delivery of (i) a base post-processing filter and (ii) a series of neural network updates synchronized with the input video pictures/frames.

Research aspects: While the former, the carriage of uncompressed video and images in ISOBMFF, seems to be something obvious to be supported within a file format, the latter enables to use neural network-based post-processing filters to enhance video quality after the decoding process, which is an active field of research. The current extensions with the file format provide a baseline for the evaluation (cf. also next section).

Video Codec Enhancements

MPEG finalized the specifications of the third editions of the Versatile Video Coding (VVC, ISO/IEC 23090-3) and the Versatile Supplemental Enhancement Information (VSEI, ISO/IEC 23002-7) standards. Additionally, MPEG issued the Committee Draft (CD) text of the eleventh edition of the Advanced Video Coding (AVC, ISO/IEC 14496-10) standard and the Committee Draft Amendment (CDAM) text on top of the High Efficiency Video Coding standard (HEVC, ISO/IEC 23008-2).

These SEI messages include two systems-related SEI messages, (a) one for signaling of green metadata as specified in ISO/IEC 23001-11 and (b) the other for signaling of an alternative video decoding interface for immersive media as specified in ISO/IEC 23090-13. Furthermore, the neural network post-filter characteristics SEI message and the neural-network post-processing filter activation SEI message have been added to AVC, HEVC, and VVC.

The two SEI messages for describing and activating post-filters using neural network technology in video bitstreams could, for example, be used for reducing coding noise, spatial and temporal upsampling (i.e., super-resolution and frame interpolation), color improvement, or general denoising of the decoder output. The description of the neural network architecture itself is based on MPEG’s neural network representation standard (ISO/IEC 15938 17). As results from an exploration experiment have shown, neural network-based post-filters can deliver better results than conventional filtering methods. Processes for invoking these new post-filters have already been tested in a software framework and will be made available in an upcoming version of the VVC reference software (ISO/IEC 23090-16).

Research aspects: SEI messages for neural network post-filters (NNPF) for AVC, HEVC, and VVC, including systems supports within the ISOBMFF, is a powerful tool(box) for interoperable visual quality enhancements at the client. This tool(box) will (i) allow for Quality of Experience (QoE) assessments and (ii) enable the analysis thereof across codecs once integrated within the corresponding reference software.

MPEG-DASH Updates

The current status of MPEG-DASH is depicted in the figure below:

The latest edition of MPEG-DASH is the 5th edition (ISO/IEC 23009-1:2022) which is publicly/freely available here. There are currently three amendments under development:

  • ISO/IEC 23009-1:2022 Amendment 1: Preroll, nonlinear playback, and other extensions. This amendment has been ratified already and is currently being integrated into the 5th edition of part 1 of the MPEG-DASH specification.
  • ISO/IEC 23009-1:2022 Amendment 2: EDRAP streaming and other extensions. EDRAP stands for Extended Dependent Random Access Point and at this meeting the Draft Amendment (DAM) has been approved. EDRAP increases the coding efficiency for random access and has been adopted within VVC.
  • ISO/IEC 23009-1:2022 Amendment 3: Segment sequences for random access and switching. This amendment is at Committee Draft Amendment (CDAM) stage, the first milestone of the formal standardization process. This amendment aims at improving tune-in time for low latency streaming.

Additionally, MPEG Technologies under Consideration (TuC) comprises a few new work items, such as content selection and adaptation logic based on device orientation and signalling of haptics data within DASH.

Finally, part 9 of MPEG-DASH — redundant encoding and packaging for segmented live media (REAP) — has been promoted to Draft International Standard (DIS). It is expected to be finalized in the upcoming meetings.

Research aspects: Random access has been extensively evaluated in the context of video coding but not (low latency) streaming. Additionally, the TuC item related to content selection and adaptation logic based on device orientation raises QoE issues to be further explored.

The 144th MPEG meeting will be held in Hannover from October 16-20, 2023. Click here for more information about MPEG meetings and their developments.

MPEG Column: 142nd MPEG Meeting in Antalya, Türkiye

The 142nd MPEG meeting was held as a face-to-face meeting in Antalya, Türkiye, and the official press release can be found here and comprises the following items:

  • MPEG issues Call for Proposals for Feature Coding for Machines
  • MPEG finalizes the 9th Edition of MPEG-2 Systems
  • MPEG reaches the First Milestone for Storage and Delivery of Haptics Data
  • MPEG completes 2nd Edition of Neural Network Coding (NNC)
  • MPEG completes Verification Test Report and Conformance and Reference Software for MPEG Immersive Video
  • MPEG finalizes work on metadata-based MPEG-D DRC Loudness Leveling

The press release text has been modified to match the target audience of ACM SIGMM and highlight research aspects targeting researchers in video technologies. This column focuses on the 9th edition of MPEG-2 Systems, storage and delivery of haptics data, neural network coding (NNC), MPEG immersive video (MIV), and updates on MPEG-DASH.

© https://www.mpeg142.com/en/

Feature Coding for Video Coding for Machines (FCVCM)

At the 142nd MPEG meeting, MPEG Technical Requirements (WG 2) issued a Call for Proposals (CfP) for technologies and solutions enabling efficient feature compression for video coding for machine vision tasks. This work on “Feature Coding for Video Coding for Machines (FCVCM)” aims at compressing intermediate features within neural networks for machine tasks. As applications for neural networks become more prevalent and the neural networks increase in complexity, use cases such as computational offload become more relevant to facilitate the widespread deployment of applications utilizing such networks. Initially as part of the “Video Coding for Machines” activity, over the last four years, MPEG has investigated potential technologies for efficient compression of feature data encountered within neural networks. This activity has resulted in establishing a set of ‘feature anchors’ that demonstrate the achievable performance for compressing feature data using state-of-the-art standardized technology. These feature anchors include tasks performed on four datasets.

Research aspects: FCVCM is about compression, and the central research aspect here is compression efficiency which can be tested against a commonly agreed dataset (anchors). Additionally, it might be attractive to research which features are relevant for video coding for machines (VCM) and quality metrics in this emerging domain. One might wonder whether, in the future, robots or other AI systems will participate in subjective quality assessments.

9th Edition of MPEG-2 Systems

MPEG-2 Systems was first standardized in 1994, defining two container formats: program stream (e.g., used for DVDs) and transport stream. The latter, also known as MPEG-2 Transport Stream (M2TS), is used for broadcast and internet TV applications and services. MPEG-2 Systems has been awarded a Technology and Engineering Emmy® in 2013 and at the 142nd MPEG meeting, MPEG Systems (WG 3) ratified the 9th edition of ISO/IEC 13818-1 MPEG-2 Systems. The new edition includes support for Low Complexity Enhancement Video Coding (LCEVC), the youngest in the MPEG family of video coding standards on top of more than 50 media stream types, including, but not limited to, 3D Audio and Versatile Video Coding (VVC). The new edition also supports new options for signaling different kinds of media, which can aid the selection of the best audio or other media tracks for specific purposes or user preferences. As an example, it can indicate that a media track provides information about a current emergency.

Research aspects: MPEG container formats such as MPEG-2 Systems and ISO Base Media File Format are necessary for storing and delivering multimedia content but are often neglected in research. Thus, I would like to take up the cudgels on behalf of the MPEG Systems working group and argue that researchers should pay more attention to these container formats and conduct research and experiments for its efficient use with respect to multimedia storage and delivery.

Storage and Delivery of Haptics Data

At the 142nd MPEG meeting, MPEG Systems (WG 3) reached the first milestone for ISO/IEC 23090-32 entitled “Carriage of haptics data” by promoting the text to Committee Draft (CD) status. This specification enables the storage and delivery of haptics data (defined by ISO/IEC 23090-31) in the ISO Base Media File Format (ISOBMFF; ISO/IEC 14496-12). Considering the nature of haptics data composed of spatial and temporal components, a data unit with various spatial or temporal data packets is used as a basic entity like an access unit of audio-visual media. Additionally, an explicit indication of a silent period considering the sparse nature of haptics data has been introduced in this draft. The standard is planned to be completed, i.e., to reach the status of Final Draft International Standard (FDIS), by the end of 2024.

Research aspects: Coding (ISO/IEC 23090-31) and carriage (ISO/IEC 23090-32) of haptics data goes hand in hand and needs further investigation concerning compression efficiency and storage/delivery performance with respect to various use cases.

Neural Network Coding (NNC)

Many applications of artificial neural networks for multimedia analysis and processing (e.g., visual and acoustic classification, extraction of multimedia descriptors, or image and video coding) utilize edge-based content processing or federated training. The trained neural networks for these applications contain many parameters (weights), resulting in a considerable size. Therefore, the MPEG standard for the compressed representation of neural networks for multimedia content description and analysis (NNC, ISO/IEC 15938-17, published in 2022) was developed, which provides a broad set of technologies for parameter reduction and quantization to compress entire neural networks efficiently.

Recently, an increasing number of artificial intelligence applications, such as edge-based content processing, content-adaptive video post-processing filters, or federated training, need to exchange updates of neural networks (e.g., after training on additional data or fine-tuning to specific content). Such updates include changes in the neural network parameters but may also involve structural changes in the neural network (e.g. when extending a classification method with a new class). In scenarios like federated training, these updates must be exchanged frequently, such that much more bandwidth over time is required, e.g., in contrast to the initial deployment of trained neural networks.

The second edition of NNC addresses these applications through efficient representation and coding of incremental updates and extending the set of compression tools that can be applied to both entire neural networks and updates. Trained models can be compressed to at least 10-20% and, for several architectures, even below 3% of their original size without performance loss. Higher compression rates are possible at moderate performance degradation. In a distributed training scenario, a model update after a training iteration can be represented at 1% or less of the base model size on average without sacrificing the classification performance of the neural network. NNC also provides synchronization mechanisms, particularly for distributed artificial intelligence scenarios, e.g., if clients in a federated learning environment drop out and later rejoin.

Research aspects: The incremental compression of neural networks enables various new use cases, which provides research opportunities for media coding and communication, including optimization thereof.

MPEG Immersive Video

At the 142nd MPEG meeting, MPEG Video Coding (WG 4) issued the verification test report of ISO/IEC 23090-12 MPEG immersive video (MIV) and completed the development of the conformance and reference software for MIV (ISO/IEC 23090-23), promoting it to the Final Draft International Standard (FDIS) stage.

MIV was developed to support the compression of immersive video content, in which multiple real or virtual cameras capture a real or virtual 3D scene. The standard enables the storage and distribution of immersive video content over existing and future networks for playback with 6 degrees of freedom (6DoF) of view position and orientation. MIV is a flexible standard for multi-view video plus depth (MVD) and multi-planar video (MPI) that leverages strong hardware support for commonly used video formats to compress volumetric video.

ISO/IEC 23090-23 specifies how to conduct conformance tests and provides reference encoder and decoder software for MIV. This draft includes 23 verified and validated conformance bitstreams spanning all profiles and encoding and decoding reference software based on version 15.1.1 of the test model for MPEG immersive video (TMIV). The test model, objective metrics, and other tools are publicly available at https://gitlab.com/mpeg-i-visual.

Research aspects: Conformance and reference software are usually provided to facilitate product conformance testing, but it also provides researchers with a common platform and dataset, allowing for the reproducibility of their research efforts. Luckily, conformance and reference software are typically publicly available with an appropriate open-source license.

MPEG-DASH Updates

Finally, I’d like to provide a quick update regarding MPEG-DASH, which has become a new part, namely redundant encoding and packaging for segmented live media (REAP; ISO/IEC 23009-9). The following figure provides the reference workflow for redundant encoding and packaging of live segmented media.

Reference workflow for redundant encoding and packaging of live segmented media.

The reference workflow comprises (i) Ingest Media Presentation Description (I-MPD), (ii) Distribution Media Presentation Description (D-MPD), and (iii) Storage Media Presentation Description (S-MPD), among others; each defining constraints on the MPD and tracks of ISO base media file format (ISOBMFF).

Additionally, the MPEG-DASH Break out Group discussed various technologies under consideration, such as (a) combining HTTP GET requests, (b) signaling common media client data (CMCD) and common media server data (CMSD) in a MPEG-DASH MPD, (c) image and video overlays in DASH, and (d) updates on lower latency.

An updated overview of DASH standards/features can be found in the Figure below.

Research aspects: The REAP committee draft (CD) is publicly available feedback from academia and industry is appreciated. In particular, first performance evaluations or/and reports from proof of concept implementations/deployments would be insightful for the next steps in the standardization of REAP.

The 143rd MPEG meeting will be held in Geneva from July 17-21, 2023. Click here for more information about MPEG meetings and their developments.

MPEG Column: 140th MPEG Meeting in Mainz, Germany

After several years of online meetings, the 140th MPEG meeting was held as a face-to-face meeting in Mainz, Germany, and the official press release can be found here and comprises the following items:

  • MPEG evaluates the Call for Proposals on Video Coding for Machines
  • MPEG evaluates Call for Evidence on Video Coding for Machines Feature Coding
  • MPEG reaches the First Milestone for Haptics Coding
  • MPEG completes a New Standard for Video Decoding Interface for Immersive Media
  • MPEG completes Development of Conformance and Reference Software for Compression of Neural Networks
  • MPEG White Papers: (i) MPEG-H 3D Audio, (ii) MPEG-I Scene Description

Video Coding for Machines

Video coding is the process of compression and decompression of digital video content with the primary purpose of consumption by humans (e.g., watching a movie or video telephony). Recently, however, massive video data is more and more analyzed without human intervention leading to a new paradigm referred to as Video Coding for Machines (VCM) which targets both (i) conventional video coding and (ii) feature coding (see here for further details).

At the 140th MPEG meeting, MPEG Technical Requirements (WG 2) evaluated the responses to the Call for Proposals (CfP) for technologies and solutions enabling efficient video coding for machine vision tasks. A total of 17 responses to this CfP were received, with responses providing various technologies such as (i) learning-based video codecs, (ii) block-based video codecs, (iii) hybrid solutions combining (i) and (ii), and (iv) novel video coding architectures. Several proposals use a region of interest-based approach, where different areas of the frames are coded in varying qualities.

The responses to the CfP reported an improvement in compression efficiency of up to 57% on object tracking, up to 45% on instance segmentation, and up to 39% on object detection, respectively, in terms of bit rate reduction for equivalent task performance. Notably, all requirements defined by WG 2 were addressed by various proposals.

Furthermore, MPEG Technical Requirements (WG 2) evaluated the responses to the Call for Evidence (CfE) for technologies and solutions enabling efficient feature coding for machine vision tasks. A total of eight responses to this CfE were received, of which six responses were considered valid based on the conditions described in the call:

  • For the tested video dataset increases in compression efficiency of up to 87% compared to the video anchor and over 90% compared to the feature anchor were reported.
  • For the tested image dataset, the compression efficiency can be increased by over 90% compared to both image and feature anchors.

Research aspects: the main research area is still the same as described in my last column, i.e., compression efficiency (incl. probably runtime, sometimes called complexity) and Quality of Experience (QoE). Additional research aspects are related to the actual task for which video coding for machines is used (e.g., segmentation, object detection, as mentioned above).

Video Decoding Interface for Immersive Media

One of the most distinctive features of immersive media compared to 2D media is that only a tiny portion of the content is presented to the user. Such a portion is interactively selected at the time of consumption. For example, a user may not see the same point cloud object’s front and back sides simultaneously. Thus, for efficiency reasons and depending on the users’ viewpoint, only the front or back sides need to be delivered, decoded, and presented. Similarly, parts of the scene behind the observer may not need to be accessed.

At the 140th MPEG meeting, MPEG Systems (WG 3) reached the final milestone of the Video Decoding Interface for Immersive Media (VDI) standard (ISO/IEC 23090-13) by promoting the text to Final Draft International Standard (FDIS). The standard defines the basic framework and specific implementation of this framework for various video coding standards, including support for application programming interface (API) standards that are widely used in practice, e.g., Vulkan by Khronos.

The VDI standard allows for dynamic adaptation of video bitstreams to provide the decoded output pictures so that the number of actual video decoders can be smaller than the number of elementary video streams to be decoded. In other cases, virtual instances of video decoders can be associated with the portions of elementary streams required to be decoded. With this standard, the resource requirements of a platform running multiple virtual video decoder instances can be further optimized by considering the specific decoded video regions to be presented to the users rather than considering only the number of video elementary streams in use. The first edition of the VDI standard includes support for the following video coding standards: High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), and Essential Video Coding (EVC).

Research aspect: VDI is also a promising standard to enable the implementation of viewport adaptive tile-based 360-degree video streaming, but its performance still needs to be assessed in various scenarios. However, requesting and decoding individual tiles within a 360-degree video streaming application is a prerequisite for enabling efficiency in such cases, and VDI provides the basis for its implementation.

MPEG-DASH Updates

Finally, I’d like to provide a quick update regarding MPEG-DASH, which seems to be in maintenance mode. As mentioned in my last blog post, amendments, Defects under Investigation (DuI), and Technologies under Consideration (TuC) are output documents, as well as a new working draft called Redundant encoding and packaging for segmented live media (REAP), which eventually will become ISO/IEC 23009-9. The scope of REAP is to define media formats for redundant encoding and packaging of live segmented media, media ingest, and asset storage. The current working draft can be downloaded here.

Research aspects: REAP defines a distributed system and, thus, all research aspects related to such systems apply here, e.g., performance and scalability, just to name a few.

The 141st MPEG meeting will be online from January 16-20, 2023. Click here for more information about MPEG meetings and their developments.

Green Video Streaming: Challenges and Opportunities

Introduction

Regarding the Intergovernmental Panel on Climate Change (IPCC) report in 2021 and Sustainable Development Goal (SDG) 13 “climate action”, urgent action is needed against climate change and global greenhouse gas (GHG) emissions in the next few years [1]. This urgency also applies to the energy consumption of digital technologies. Internet data traffic is responsible for more than half of digital technology’s global impact, which is 55% of energy consumption annually. The Shift Project forecast [2] shows an increase of 25% in data traffic associated with 9% more energy consumption per year, reaching 8% of all GHG emissions in 2025. 

Video flows represented 80% of global data flows in 2018, and this video data volume is increasing by 80% annually [2].  This exponential increase in the use of streaming video is due to (i) improvements in Internet connections and service offerings [3], (ii) the rapid development of video entertainment (e.g., video games and cloud gaming services), (iii) the deployment of Ultra High-Definition (UHD, 4K, 8K), Virtual Reality (VR), and Augmented Reality (AR), and (iv) an increasing number of video surveillance and IoT applications [4]. Interestingly, video processing and streaming generate 306 million tons of CO2, which is 20% of digital technology’s total GHG emissions and nearly 1% of worldwide GHG emissions [2].

While research has shown that the carbon footprint of video streaming has been decreasing in recent years [5], there is still a high need to invest in research and development of efficient next-generation computing and communication technologies for video processing technologies. This carbon footprint reduction is due to technology efficiency trends in cloud computing (e.g., renewable power), emerging modern mobile networks (e.g., growth in Internet speed), and end-user devices (e.g., users prefer less energy-intensive mobile and tablet devices over larger PCs and laptops). However, since the demand for video streaming is growing dramatically, it raises the risk of increased energy consumption. 

Investigating energy efficiency during video streaming is essential to developing sustainable video technologies. The processes from video encoding to decoding and displaying the video on the end user’s screen require electricity, which results in CO2 emissions. Consequently, the key question becomes: “How can we improve energy efficiency for video streaming systems while maintaining an acceptable Quality of Experience (QoE)?”.

Challenges and Opportunities 

In this section, we will outline challenges and opportunities to tackle the associated emissions for video streaming of (i) data centers, (ii) networks, and (iii) end-user devices [5] – presented in Figure 1.

Figure 1. Challenges and opportunities to tackle emissions for video streaming.

Data centers are responsible for the video encoding process and storage of the video content. The video data traffic volume grows through data centers, driving their workloads with the estimated total power consumption of more than 1,000 TWh by 2025 [6]. Data centers are the most prioritized target of regulatory initiatives. National and regional policies are established related to the growing number of data centers and the concern over their energy consumption [7]. 

  • Suitable cloud services: Select energy-optimized and sustainable cloud services to help reduce CO2 emissions. Recently, IT service providers have started innovating in energy-efficient hardware by designing highly efficient Tensor Processing Units, high-performance servers, and machine-learning approaches to optimize cooling automatically to reduce the energy consumption in their data centers [8]. In addition to advances in hardware designs, it is also essential to consider the software’s potential for improvements in energy efficiency [9].
  • Low-carbon cloud regions: IT service providers offer cloud computing platforms in multiple regions delivered through a global network of data centers. Various power plants (e.g., fuel, natural gas, coal, wind, sun, and water) supply electricity to run these data centers generating different amounts of greenhouse gases. Therefore, it is essential to consider how much carbon is emitted by the power plants that generate electricity to run cloud services in the selected region for cloud computing. Thus, a cloud region needs to be considered by its entire carbon footprint, including its source of energy production.
  • Efficient and fast transcoders (and encoders): Another essential factor to be considered is using efficient transcoders/encoders that can transcode/encode the video content faster and with less energy consumption but still at an acceptable quality for the end-user [10][11][12].
  • Optimizing the video encoding parameters: There is a huge potential in optimizing the overall energy consumption of video streaming by optimizing the video encoding parameters to reduce the bitrates of encoded videos without affecting quality, including choosing a more power-efficient codec, resolution, frame rate, and bitrate among other parameters.

The next component within the video streaming process is video delivery within heterogeneous networks. Two essential energy consumption factors for video delivery are the network technology used and the amount of data to be transferred.

  • Energy-efficient network technology for video streaming: the network technology used to transmit data from the data center to the end-users determine energy performance since the networks’ GHG emissions vary widely [5]. A fiber-optic network is the most climate-friendly transmission technology, with only 2 grams of CO2 per hour of HD video streaming, while a copper cable (VDSL) generates twice as much (i.e., 4 grams of CO2 per hour). UMTS data transmission (3G) produces 90 grams of CO2 per hour, reduced to 5 grams of CO2 per hour when using 5G [13]. Therefore, research shows that expanding fiber-optic networks and 5G transmission technology are promising for climate change mitigation [5].
  • Lower data transmission: Lower data transmission drops energy consumption. Therefore, the amount of video data needs to be reduced without compromising video quality [2]. The video data per hour for various resolutions and qualities range from 30 MB/hr for very low resolutions to 7 GB/hr for UHD resolutions. A higher data volume causes more transmission energy. Another possibility is the reduction of unnecessary video usage, for example, by avoiding autoplay and embedded videos. Such video content aims to maximize the quantity of content consumed. Broadcasting platforms also play a central role in how viewers consume content and, thus, the impact on the environment [2].

The last component of the video streaming process is video usage at the end-user device, including decoding and displaying the video content on the end-user devices like personal computers, laptops, tablets, phones, or television sets.

  • End-user devices: Research works [3][14] show that the end-user devices and decoding hardware account for the greatest portion of energy consumption and CO2 emission in video streaming. Thus, most reduction strategies lay within the energy efficiency of the end-user devices, for instance, by improving screen display technologies or shifting from desktops to using more energy-efficient laptops, tablets, and smartphones.
  • Streaming parameters: Energy consumption of the video decoding process depends on video streaming parameters similar to the end-user QoE. Thus, it is important to intelligently select video streaming parameters to optimize the QoE and power efficiency of the end-user device. Moreover, different underlying video encoding parameters also impact the video decodings’ energy usage.
  • End-user device environment: A wide variety of browsers (including legacy versions), codecs, and operating systems besides the hardware (e.g., CPU, display) determine the final power consumption.

In this column, we argue that these challenges and opportunities for green video streaming can help to gain insights that further drive the adoption of novel, more sustainable usage patterns to reduce the overall energy consumption of video streaming without sacrificing end-user’s QoE.  

End-to-end video streaming: While we have highlighted the main factors of each video streaming component that impact energy consumption to create a generic power consumption model, we need to study and holistically analyze video streaming and its impact on all components. Implementing a dedicated system for optimizing energy consumption may introduce additional processing on top of regular service operations if not done efficiently. For instance, overall traffic will be reduced when using the most recent video codec (e.g., VVC) compared to AVC (the most deployed video codec up to date), but its encoding and decoding complexity will be increased and, thus, require more energy.

Optimizing the video streaming parameters: There is a huge potential in optimizing the overall energy consumption for video service providers by optimizing the video streaming parameters, including choosing a more power-efficient codec implementation, resolution, frame rate, and bitrate, among other parameters.

GAIA: Intelligent Climate-Friendly Video Platform 

Recently, we started the “GAIA” project to research the aspects mentioned before. In particular, the GAIA project researches and develops a climate-friendly adaptive video streaming platform that provides (i) complete energy awareness and accountability, including energy consumption and GHG emissions along the entire delivery chain, from content creation and server-side encoding to video transmission and client-side rendering; and (ii) reduced energy consumption and GHG emissions through advanced analytics and optimizations on all phases of the video delivery chain.

Figure 2. GAIA high-level approach for the intelligent climate-friendly video platform.

As shown in Figure 2, the research considered in GAIA comprises benchmarking, energy-aware and machine learning-based modeling, optimization algorithms, monitoring, and auto-tuning.

  • Energy-aware benchmarking involves a functional requirement analysis of the leading project objectives, measurement of the energy for transcoding video tasks on various heterogeneous cloud and edge resources, video delivery, and video decoding on end-user devices. 
  • Energy-aware modelling and prediction use the benchmarking results and the data collected from real deployments to build regression and machine learning. The models predict the energy consumed by heterogeneous cloud and edge resources, possibly distributed across various clouds and delivery networks. We further provide energy models for video distribution on different channels and consider the relation between bitrate, codec, and video quality.
  • Energy-aware optimization and scheduling researches and develops appropriate generic algorithms according to the requirements for real-time delivery (including encoding and transmission) of video processing tasks (i.e., transcoding) deployed on heterogeneous cloud and edge infrastructures. 
  • Energy-aware monitoring and auto-tuning perform dynamic real-time energy monitoring of the different video delivery chains for improved data collection, benchmarking, modelling and optimization. 

GMSys 2023: First International ACM Green Multimedia Systems Workshop

Finally, we would like to use this opportunity to highlight and promote the first International ACM Green Multimedia Systems Workshop (GMSys’23). The GMSys’23 takes place in Vancouver, Canada, in June 2023 co-located with ACM Multimedia Systems 2023. We expect a series of at least three consecutive workshops since this topic may critically impact the innovation and development of climate-effective approaches. This workshop strongly focuses on recent developments and challenges for energy reduction in multimedia systems and the innovations, concepts, and energy-efficient solutions from video generation to processing, delivery, and consumption. Please see the Call for Papers for further details.

Final Remarks 

In both the GAIA project and ACM GMSys workshop, there are various actions and initiatives to put energy efficiency-related topics for video streaming on the center stage of research and development. In this column, we highlighted major video streaming components concerning their possible challenges and opportunities enabling energy-efficient, sustainable video streaming, sometimes also referred to as green video streaming. Having a thorough understanding of the key issues and gaining meaningful insights are essential for successful research.

References

[1] IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.
[2] M. Efoui-Hess, Climate Crisis: the unsustainable use of online video – The practical case for digital sobriety, Technical Report, The Shift Project, July, 2019.
[3] IEA (2020), The carbon footprint of streaming video: fact-checking the headlines, IEA, Paris https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines.
[4] Cisco Annual Internet Report (2018–2023) White Paper, 2018 (updated 2020), https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
[5] C. Fletcher, et al., Carbon impact of video streaming, Technical Report, 2021, https://s22.q4cdn.com/959853165/files/doc_events/2021/Carbon-impact-of-video-streaming.pdf.
[6] Huawei Releases Top 10 Trends of Data Center Facility in 2025, 2020, https://www.huawei.com/en/news/2020/2/huawei-top10-trends-datacenter-facility-2025.
[7] COMMISSION REGULATION (EC) No 642/2009, Official Journal of the European Union, 2009, https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:191:0042:0052:EN:PDF#:~:text=COMMISSION%20REGULATION%20(EC)%20No%20642/2009%20of%2022%20July,regard%20to%20the%20Treaty%20establishing%20the%20European%20Community.
[8] U. Hölzle, Data centers are more energy efficient than ever, Technical Report, 2020, https://blog.google/outreach-initiatives/sustainability/data-centers-energy-efficient/.
[9] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. 2020. There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 368, 6495 (2020), eaam9744. DOI:https://doi.org/10.1126/science.aam9744
[10] M. G. Koziri, P. K. Papadopoulos, N. Tziritas, T. Loukopoulos, S. U. Khan and A. Y. Zomaya, “Efficient Cloud Provisioning for Video Transcoding: Review, Open Challenges and Future Opportunities,” in IEEE Internet Computing, vol. 22, no. 5, pp. 46-55, Sep./Oct. 2018, doi: 10.1109/MIC.2017.3301630.
[11] J. -F. Franche and S. Coulombe, “Fast H.264 to HEVC transcoder based on post-order traversal of quadtree structure,” 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 2015, pp. 477-481, doi: 10.1109/ICIP.2015.7350844.
[12] E. de la Torre, R. Rodriguez-Sanchez and J. L. Martínez, “Fast video transcoding from HEVC to VP9,” in IEEE Transactions on Consumer Electronics, vol. 61, no. 3, pp. 336-343, Aug. 2015, doi: 10.1109/TCE.2015.7298293.
[13] Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Video streaming: data transmission technology crucial for climate footprint, No. 144/20, 2020, https://www.bmuv.de/en/pressrelease/video-streaming-data-transmission-technology-crucial-for-climate-footprint/
[14] Malmodin, Jens, and Dag Lundén. 2018. “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015” Sustainability 10, no. 9: 3027. https://doi.org/10.3390/su10093027



MPEG Column: 139th MPEG Meeting (virtual/online)

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects.

The 139th MPEG meeting was once again held as an online meeting, and the official press release can be found here and comprises the following items:

  • MPEG Issues Call for Evidence for Video Coding for Machines (VCM)
  • MPEG Ratifies the Third Edition of Green Metadata, a Standard for Energy-Efficient Media Consumption
  • MPEG Completes the Third Edition of the Common Media Application Format (CMAF) by adding Support for 8K and High Frame Rate for High Efficiency Video Coding
  • MPEG Scene Descriptions adds Support for Immersive Media Codecs
  • MPEG Starts New Amendment of VSEI containing Technology for Neural Network-based Post Filtering
  • MPEG Starts New Edition of Video Coding-Independent Code Points Standard
  • MPEG White Paper on the Third Edition of the Common Media Application Format

In this report, I’d like to focus on VCM, Green Metadata, CMAF, VSEI, and a brief update about DASH (as usual).

Video Coding for Machines (VCM)

MPEG’s exploration work on Video Coding for Machines (VCM) aims at compressing features for machine-performed tasks such as video object detection and event analysis. As neural networks increase in complexity, architectures such as collaborative intelligence, whereby a network is distributed across an edge device and the cloud, become advantageous. With the rise of newer network architectures being deployed amongst a heterogenous population of edge devices, such architectures bring flexibility to systems implementers. Due to such architectures, there is a need to efficiently compress intermediate feature information for transport over wide area networks (WANs). As feature information differs substantially from conventional image or video data, coding technologies and solutions for machine usage could differ from conventional human-viewing-oriented applications to achieve optimized performance. With the rise of machine learning technologies and machine vision applications, the amount of video and images consumed by machines has rapidly grown. Typical use cases include intelligent transportation, smart city technology, intelligent content management, etc., which incorporate machine vision tasks such as object detection, instance segmentation, and object tracking. Due to the large volume of video data, extracting and compressing the feature from a video is essential for efficient transmission and storage. Feature compression technology solicited in this Call for Evidence (CfE) can also be helpful in other regards, such as computational offloading and privacy protection.

Over the last three years, MPEG has investigated potential technologies for efficiently compressing feature data for machine vision tasks and established an evaluation mechanism that includes feature anchors, rate-distortion-based metrics, and evaluation pipelines. The evaluation framework of VCM depicted below comprises neural network tasks (typically informative) at both ends as well as VCM encoder and VCM decoder, respectively. The normative part of VCM typically includes the bitstream syntax which implicitly defines the decoder whereas other parts are usually left open for industry competition and research.

Further details about the CfP and how interested parties can respond can be found in the official press release here.

Research aspects: the main research area for coding-related standards is certainly compression efficiency (and probably runtime). However, this video coding standard will not target humans as video consumers but as machines. Thus, video quality and, in particular, Quality of Experience needs to be interpreted differently, which could be another worthwhile research dimension to be studied in the future.

Green Metadata

MPEG Systems has been working on Green Metadata for the last ten years to enable the adaptation of the client’s power consumption according to the complexity of the bitstream. Many modern implementations of video decoders can adjust their operating voltage or clock speed to adjust the power consumption level according to the required computational power. Thus, if the decoder implementation knows the variation in the complexity of the incoming bitstream, then the decoder can adjust its power consumption level to the complexity of the bitstream. This will allow less energy use in general and extended video playback for the battery-powered devices.

The third edition enables support for Versatile Video Coding (VVC, ISO/IEC 23090-3, a.k.a. ITU-T H.266) encoded bitstreams and enhances the capability of this standard for real-time communication applications and services. While finalizing the support of VVC, MPEG Systems has also started the development of a new amendment to the Green Metadata standard, adding the support of Essential Video Coding (EVC, ISO/IEC 23094-1) encoded bitstreams.

Research aspects: reducing global greenhouse gas emissions will certainly be a challenge for humanity in the upcoming years. The amount of data on today’s internet is dominated by video, which all consumes energy from production to consumption. Therefore, there is a strong need for explicit research efforts to make video streaming in all facets friendly to our environment. 

Third Edition of Common Media Application Format (CMAF)

The third edition of CMAF adds two new media profiles for High Efficiency Video Coding (HEVC, ISO/IEC 23008-2, a.k.a. ITU-T H.265), namely for (i) 8K and (ii) High Frame Rate (HFR). Regarding the former, the media profile supporting 8K resolution video encoded with HEVC (Main 10 profile, Main Tier with 10 bits per colour component) has been added to the list of CMAF media profiles for HEVC. The profile will be branded as ‘c8k0’ and will support videos with up to 7680×4320 pixels (8K) and up to 60 frames per second. Regarding the latter, another media profile has been added to the list of CMAF media profiles, branded as ‘c8k1’ and supports HEVC encoded video with up to 8K resolution and up to 120 frames per second. Finally, chroma location indication support has been added to the 3rd edition of CMAF.

Research aspects: basically, CMAF serves two purposes: (i) harmonizing DASH and HLS at the segment format level by adopting the ISOBMFF and (ii) enabling low latency streaming applications by introducing chunks (that are smaller than segments). The third edition supports resolutions up to 8K and HFR, which raises the question of how low latency can be achieved for 8K/HFR applications and services and under which conditions.

New Amendment for Versatile Supplemental Enhancement Information (VSEI) containing Technology for Neural Network-based Post Filtering

At the 139th MPEG meeting, the MPEG Joint Video Experts Team with ITU-T SG 16 (WG 5; JVET) issued a Committee Draft Amendment (CDAM) text for the Versatile Supplemental Enhancement Information (VSEI) standard (ISO/IEC 23002-7, a.k.a. ITU-T H.274). Beyond the Supplemental Enhancement Information (SEI) message for shutter interval indication, which is already known from its specification in Advanced Video Coding (AVC, ISO/IEC 14496-10, a.k.a. ITU-T H.264) and High Efficiency Video Coding (HEVC, ISO/IEC 23008-2, a.k.a. ITU-T H.265), and a new indicator for subsampling phase indication which is relevant for variable-resolution video streaming, this new amendment contains two SEI messages for describing and activating post filters using neural network technology in video bitstreams. This could reduce coding noise, upsampling, colour improvement, or denoising. The description of the neural network architecture itself is based on MPEG’s neural network coding standard (ISO/IEC 15938-17). Results from an exploration experiment have shown that neural network-based post filters can deliver better performance than conventional filtering methods. Processes for invoking these new post-processing filters have already been tested in a software framework and will be made available in an upcoming version of the Versatile Video Coding (VVC, ISO/IEC 23090-3, a.k.a. ITU-T H.266) reference software (ISO/IEC 23090-16, a.k.a. ITU-T H.266.2).

Research aspects: quality enhancements such as reducing coding noise, upsampling, colour improvement, or denoising have been researched quite substantially either with or without neural networks. Enabling such quality enhancements via (V)SEI messages enable system-level support for research and development efforts in this area. For example, integration in video streaming applications or/and conversational services, including performance evaluations.

The latest MPEG-DASH Update

Finally, I’d like to provide a brief update on MPEG-DASH! At the 139th MPEG meeting, MPEG Systems issued a new working draft related to Extended Dependent Random Access Point (EDRAP) streaming and other extensions, which will be further discussed during the Ad-hoc Group (AhG) period (please join the dash email list for further details/announcements). Furthermore, Defects under Investigation (DuI) and Technologies under Consideration (TuC) have been updated. Finally, a new part has been added (ISO/IEC 23009-9), which is called encoder and packager synchronization, for which also a working draft has been produced. Publicly available documents (if any) can be found here.

An updated overview of DASH standards/features can be found in the Figure below.

Research aspects: in the Christian Doppler Laboratory ATHENA we aim to research and develop novel paradigms, approaches, (prototype) tools and evaluation results for the phases (i) multimedia content provisioning (i.e., video coding), (ii) content delivery (i.e., video networking), and (iii) content consumption (i.e., video player incl. ABR and QoE) in the media delivery chain as well as for (iv) end-to-end aspects, with a focus on, but not being limited to, HTTP Adaptive Streaming (HAS). Recent DASH-related publications include “Low Latency Live Streaming Implementation in DASH and HLS” and “Segment Prefetching at the Edge for Adaptive Video Streaming” among others.

The 140th MPEG meeting will be face-to-face in Mainz, Germany, from October 24-28, 2022. Click here for more information about MPEG meetings and their developments.

MPEG Column: 137th MPEG Meeting (virtual/online)

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects.

The 137th MPEG meeting was once again held as an online meeting, and the official press release can be found here and comprises the following items:

  • MPEG Systems Wins Two More Technology & Engineering Emmy® Awards
  • MPEG Audio Coding selects 6DoF Technology for MPEG-I Immersive Audio
  • MPEG Requirements issues Call for Proposals for Encoder and Packager Synchronization
  • MPEG Systems promotes MPEG-I Scene Description to the Final Stage
  • MPEG Systems promotes Smart Contracts for Media to the Final Stage
  • MPEG Systems further enhanced the ISOBMFF Standard
  • MPEG Video Coding completes Conformance and Reference Software for LCEVC
  • MPEG Video Coding issues Committee Draft of Conformance and Reference Software for MPEG Immersive Video
  • JVET produces Second Editions of VVC & VSEI and finalizes VVC Reference Software
  • JVET promotes Tenth Edition of AVC to Final Draft International Standard
  • JVET extends HEVC for High-Capability Applications up to 16K and Beyond
  • MPEG Genomic Coding evaluated Responses on New Advanced Genomics Features and Technologies
  • MPEG White Papers
    • Neural Network Coding (NNC)
    • Low Complexity Enhancement Video Coding (LCEVC)
    • MPEG Immersive video

In this column, I’d like to focus on the Emmy® Awards, video coding updates (AVC, HEVC, VVC, and beyond), and a brief update about DASH (as usual).

MPEG Systems Wins Two More Technology & Engineering Emmy® Awards

MPEG Systems is pleased to report that MPEG is being recognized this year by the National Academy for Television Arts and Sciences (NATAS) with two Technology & Engineering Emmy® Awards, for (i) “standardization of font technology for custom downloadable fonts and typography for Web and TV devices and for (ii) “standardization of HTTP encapsulated protocols”, respectively.

The first of these Emmys is related to MPEG’s Open Font Format (ISO/IEC 14496-22) and the second of these Emmys is related to MPEG Dynamic Adaptive Streaming over HTTP (i.e., MPEG DASH, ISO/IEC 23009). The MPEG DASH standard is the only commercially deployed international standard technology for media streaming over HTTP and it is widely used in many products. MPEG developed the first edition of the DASH standard in 2012 in collaboration with 3GPP and since then has produced four more editions amending the core specification by adding new features and extended functionality. Furthermore, MPEG has developed six other standards as additional “parts” of ISO/IEC 23009 enabling the effective use of the MPEG DASH standards with reference software and conformance testing tools, guidelines, and enhancements for additional deployment scenarios. MPEG DASH has dramatically changed the streaming industry by providing a standard that is widely adopted by various consortia such as 3GPP, ATSC, DVB, and HbbTV, and across different sectors. The success of this standard is due to its technical excellence, large participation of the industry in its development, addressing the market needs, and working with all sectors of industry all under ISO/IEC JTC 1/SC 29 MPEG Systems’ standard development practices and leadership.

These are MPEG’s fifth and sixth Technology & Engineering Emmy® Awards (after MPEG-1 and MPEG-2 together with JPEG in 1996, Advanced Video Coding (AVC) in 2008, MPEG-2 Transport Stream in 2013, and ISO Base Media File Format in 2021) and MPEG’s seventh and eighth overall Emmy® Awards (including the Primetime Engineering Emmy® Awards for Advanced Video Coding (AVC) High Profile in 2008 and High-Efficiency Video Coding (HEVC) in 2017).

I have been actively contributing to the MPEG DASH standard since its inception. My initial blog post dates back to 2010 and the first edition of MPEG DASH was published in 2012. A more detailed MPEG DASH timeline provides many pointers to the Institute of Information Technology (ITEC) at the Alpen-Adria-Universität Klagenfurt and its DASH activities that is now continued within the Christian Doppler Laboratory ATHENA. In the end, the MPEG DASH community of contributors to and users of the standards can be very proud of this achievement only after 10 years of the first edition being published. Thus, also happy 10th birthday MPEG DASH and what a nice birthday gift.

Video Coding Updates

In terms of video coding, there have been many updates across various standards’ projects at the 137th MPEG Meeting.

Advanced Video Coding

Starting with Advanced Video Coding (AVC), the 10th edition of Advanced Video Coding (AVC, ISO/IEC 14496-10 | ITU-T H.264) has been promoted to Final Draft International Standard (FDIS) which is the final stage of the standardization process. Beyond various text improvements, this specifies a new SEI message for describing the shutter interval applied during video capture. This can be variable in video cameras, and conveying this information can be valuable for analysis and post-processing of the decoded video.

High-Efficiency Video Coding

The High-Efficiency Video Coding (HEVC, ISO/IEC 23008-2 | ITU-T H.265) standard has been extended to support high-capability applications. It defines new levels and tiers providing support for very high bit rates and video resolutions up to 16K, as well as defining an unconstrained level. This will enable the usage of HEVC in new application domains, including professional, scientific, and medical video sectors.

Versatile Video Coding

The second editions of Versatile Video Coding (VVC, ISO/IEC 23090-3 | ITU-T H.266) and Versatile supplemental enhancement information messages for coded video bitstreams (VSEI, ISO/IEC 23002-7 | ITU-T H.274) have reached FDIS status. The new VVC version defines profiles and levels supporting larger bit depths (up to 16 bits), including some low-level coding tool modifications to obtain improved compression efficiency with high bit-depth video at high bit rates. VSEI version 2 adds SEI messages giving additional support for scalability, multi-view, display adaptation, improved stream access, and other use cases. Furthermore, a Committee Draft Amendment (CDAM) for the next amendment of VVC was issued to begin the formal approval process to enable linking VVC with the Green Metadata (ISO/IEC 23001-11) and Video Decoding Interface (ISO/IEC 23090-13) standards and add a new unconstrained level for exceptionally high capability applications such as certain uses in professional, scientific, and medical application scenarios. Finally, the reference software package for VVC (ISO/IEC 23090-16) was also completed with its achievement of FDIS status. Reference software is extremely helpful for developers of VVC devices, helping them in testing their implementations for conformance to the video coding specification.

Beyond VVC

The activities in terms of video coding beyond VVC capabilities, the Enhanced Compression Model (ECM 3.1) performance over VTM-11.0 + JVET-V0056 (i.e., VVC reference software) shows an improvement of close to 15% for Random Access Main 10. This is indeed encouraging and, in general, these activities are currently managed within two exploration experiments (EEs). The first is on neural network-based (NN) video coding technology (EE1) and the second is on enhanced compression beyond VVC capability (EE2). EE1 currently plans to further investigate (i) enhancement filters (loop and post) and (ii) super-resolution (JVET-Y2023). It will further investigate selected NN technologies on top of ECM 4 and the implementation of selected NN technologies in the software library, for platform-independent cross-checking and integerization. Enhanced Compression Model 4 (ECM 4) comprises new elements on MRL for intra, various GPM/affine/MV-coding improvements including TM, adaptive intra MTS, coefficient sign prediction, CCSAO improvements, bug fixes, and encoder improvements (JVET-Y2025). EE2 will investigate intra prediction improvements, inter prediction improvements, improved screen content tools, and improved entropy coding (JVET-Y2024).

Research aspects: video coding performance is usually assessed in terms of compression efficiency or/and encoding runtime (time complexity). Another aspect is related to visual quality, its assessment, and metrics, specifically for neural network-based video coding technologies.

The latest MPEG-DASH Update

Finally, I’d like to provide a brief update on MPEG-DASH! At the 137th MPEG meeting, MPEG Systems issued a draft amendment to the core MPEG-DASH specification (i.e., ISO/IEC 23009-1) about Extended Dependent Random Access Point (EDRAP) streaming and other extensions which it will be further discussed during the Ad-hoc Group (AhG) period (please join the dash email list for further details/announcements). Furthermore, Defects under Investigation (DuI) and Technologies under Consideration (TuC) are available here.

An updated overview of DASH standards/features can be found in the Figure below.

MPEG-DASH status of January 2021.

Research aspects: in the Christian Doppler Laboratory ATHENA we aim to research and develop novel paradigms, approaches, (prototype) tools and evaluation results for the phases (i) multimedia content provisioning (i.e., video coding), (ii) content delivery (i.e., video networking), and (iii) content consumption (i.e., video player incl. ABR and QoE) in the media delivery chain as well as for (iv) end-to-end aspects, with a focus on, but not being limited to, HTTP Adaptive Streaming (HAS).

The 138th MPEG meeting will be again an online meeting in July 2022. Click here for more information about MPEG meetings and their developments.

Towards an updated understanding of immersive multimedia experiences

Bringing theories and measurement techniques up to date

Development of technology for immersive multimedia experiences

Immersive multimedia experiences, as its name is suggesting are those experiences focusing on media that is able to immerse users with different interactions into an experience of an environment. Through different technologies and approaches, immersive media is emulating a physical world through the means of a digital or simulated world, with the goal of creating a sense of immersion. Users are involved in a technologically driven environment where they may actively join and participate in the experiences offered by the generated world [White Paper, 2020]. Currently, as hardware and technologies are developing further, those immersive experiences are getting better with the more advanced feeling of immersion. This means that immersive multimedia experiences are exceeding just the viewing of the screen and are enabling bigger potential. This column aims to present and discuss the need for an up to date understanding of immersive media quality. Firstly, the development of the constructs of immersion and presence over time will be outlined. Second, influencing factors of immersive media quality will be introduced, and related standardisation activities will be discussed. Finally, this column will be concluded by summarising why an updated understanding of immersive media quality is urgent.

Development of theories covering immersion and presence

One of the first definitions of presence was established by Slater and Usoh already in 1993 and they defined presence as a “sense of presence” in a virtual environment [Slater, 1993]. This is in line with other early definitions of presence and immersion. For example, Biocca defined immersion as a system property. Those definitions focused more on the ability of the system to technically accurately provide stimuli to users [Biocca, 1995]. As technology was only slowly capable to provide systems that are able to generate stimulation to users that can mimic the real world, this was of course the main content of definitions. Quite early on questionnaires to capture the experienced immersion were introduced, such as the Igroup Presence Questionnaire (IPQ) [Schubert, 2001]. Also, the early methods for measuring experiences are mainly focused on aspects of how good the representation of the real world was done and perceived. With maturing technology, the focus was shifted more towards emotions and more cognitive phenomena besides the basics stimulus generation. For example, Baños and colleagues showed that experienced emotion and immersion are in relation to each other and also influence the sense of presence [Baños, 2004]. Newer definitions focus more on these mentioned cognitive aspects, e.g., Nilsson defines three factors that can lead to immersion: (i) technology, (ii) narratives, and (iii) challenges, where only the factor technology is a non-cognitive one [Nilsson, 2016]. In 2018, Slater defines the place illusion as the illusion of being in a place while knowing one is not really there. This is a focus on a cognitive construct, removal of disbelieve, but still leaves the focus of how the illusion is created mainly on system factors instead of cognitive ones [Slater, 2018]. In recent years, more and more activities were started to define how to measure immersive experiences as an overall construct.

Constructs of interest in relation to immersion and presence

This section discusses constructs and activities that are related to immersion and presence. In the beginning, subtypes of extended reality (XR) and the relation to user experience (UX) as well as quality of experience (QoE) are outlined. Afterwards, recent standardization activities related to immersive multimedia experiences are introduced and discussed.
Moreover, immersive multimedia experiences can be divided by many different factors, but recently the most common distinctions are regarding the interactivity where content can be made for multi-directional viewing as 360-degree videos, or where content is presented through interactive extended reality. Those XR technologies can be divided into mixed reality (MR), augmented reality (AR), augmented virtuality (AV), virtual reality (VR), and everything in between [Milgram, 1995]. Through all those areas immersive multimedia experiences have found a place on the market, and are providing new solutions to challenges in research as well as in industries, with a growing potential of adopting into different areas [Chuah, 2018].

While discussing immersive multimedia experiences, it is important to address user experience and quality of immersive multimedia experiences, which can be defined following the definition of quality of experience itself [White Paper, 2012] as a measure of the delight or annoyance of a customer’s experiences with a service, wherein this case service is an immersive multimedia experience. Furthermore, while defining QoE terms experience and application are also defined and can be utilized for immersive multimedia experience, where an experience is an individual’s stream of perception and interpretation of one or multiple events; and application is a software and/or hardware that enables usage and interaction by a user for a given purpose [White Paper 2012].

As already mentioned, immersive media experiences have an impact in many different fields, but one, where the impact of immersion and presence is particularly investigated, is gaming applications along with QoE models and optimizations that go with it. Specifically interesting is the framework and standardization for subjective evaluation methods for gaming quality [ITU-T Rec. P.809, 2018]. This standardization is providing instructions on how to assess QoE for gaming services from two possible test paradigms, i.e., passive viewing tests and interactive tests. However, even though detailed information about the environments, test set-ups, questionnaires, and game selection materials are available those are still focused on the gaming field and concepts of flow and immersion in games themselves.

Together with gaming, another step in defining and standardizing infrastructure of audiovisual services in telepresence, immersive environments, and virtual and extended reality, has been done in regards to defining different service scenarios of immersive live experience [ITU-T Rec. H.430.3, 2018] where live sports, entertainment, and telepresence scenarios have been described. With this standardization, some different immersive live experience scenarios have been described together with architectural frameworks for delivering such services, but not covering all possible use case examples. When mentioning immersive multimedia experience, spatial audio sometimes referred to as “immersive audio” must be mentioned as is one of the key features of especially of AR or VR experiences [Agrawal, 2019], because in AR experiences it can provide immersive experiences on its own, but also enhance VR visual information.
In order to be able to correctly assess QoE or UX, one must be aware of all characteristics such as user, system, content, and context because their actual state may have an influence on the immersive multimedia experience of the user. That is why all those characteristics are defined as influencing factors (IF) and can be divided into Human IF, System IF, and Context IF and are as well standardized for virtual reality services [ITU-T Rec. G.1035, 2021]. Particularly addressed Human IF is simulator sickness as it specifically occurs as a result of exposure to immersive XR environments. Simulator sickness is also known as cybersickness or VR/AR sickness, as it is visually induced motion sickness triggered by visual stimuli and caused by the sensory conflict arising between the vestibular and visual systems. Therefore, to achieve the full potential of immersive multimedia experience, the unwanted sensation of simulation sickness must be reduced. However, with the frequent change of immersive technology, some hardware improvement is leading to better experiences, but a constant updating of requirement specification, design, and development is needed together with it to keep up with the best practices.

Conclusion – Towards an updated understanding

Considering the development of theories, definitions, and influencing factors around the constructs immersion and presence, one can see two different streams. First, there is a quite strong focus on the technical ability of systems in most early theories. Second, the cognitive aspects and non-technical influencing factors gain importance in the new works. Of course, it is clear that in the 1990ies, technology was not yet ready to provide a good simulation of the real world. Therefore, most activities to improve systems were focused on that activity including measurements techniques. In the last few years, technology was fast developing and the basic simulation of a virtual environment is now possible also on mobile devices such as the Oculus Quest 2. Although concepts such as immersion or presence are applicable from the past, definitions dealing with those concepts need to capture as well nowadays technology. Meanwhile, systems have proven to provide good real-world simulators and provide users with a feeling of presence and immersion. While there is already activity in standardization which is quite strong and also industry-driven, research in many research disciplines such as telecommunication are still mainly using old questionnaires. These questionnaires are mostly focused on technological/real-world simulation constructs and, thus, not able to differentiate products and services anymore to an extent that is optimal. There are some newer attempts to create new measurement tools for e.g. social aspects of immersive systems [Li, 2019; Toet, 2021]. Measurement scales aiming at capturing differences due to the ability of systems to create realistic simulations are not able to reliably differentiate different systems due to the fact that most systems are providing realistic real-world simulations. To enhance research and industrial development in the field of immersive media, we need definitions of constructs and measurement methods that are appropriate for the current technology even if the newer measurement and definitions are not as often cited/used yet. That will lead to improved development and in the future better immersive media experiences.

One step towards understanding immersive multimedia experiences is reflected by QoMEX 2022. The 14th International Conference on Quality of Multimedia Experience will be held from September 5th to 7th, 2022 in Lippstadt, Germany. It will bring together leading experts from academia and industry to present and discuss current and future research on multimedia quality, Quality of Experience (QoE), and User Experience (UX). It will contribute to excellence in developing multimedia technology towards user well-being and foster the exchange between multidisciplinary communities. One core topic is immersive experiences and technologies as well as new assessment and evaluation methods, and both topics contribute to bringing theories and measurement techniques up to date. For more details, please visit https://qomex2022.itec.aau.at.

References

[Agrawal, 2019] Agrawal, S., Simon, A., Bech, S., Bærentsen, K., Forchhammer, S. (2019). “Defining Immersion: Literature Review and Implications for Research on Immersive Audiovisual Experiences.” In Audio Engineering Society Convention 147. Audio Engineering Society.
[Biocca, 1995] Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. Communication in the age of virtual reality, 15(32), 10-5555.
[Baños, 2004] Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and emotion: their impact on the sense of presence. Cyberpsychology & behavior, 7(6), 734-741.
[Chuah, 2018] Chuah, S. H. W. (2018). Why and who will adopt extended reality technology? Literature review, synthesis, and future research agenda. Literature Review, Synthesis, and Future Research Agenda (December 13, 2018).
[ITU-T Rec. G.1035, 2021] ITU-T Recommendation G:1035 (2021). Influencing factors on quality of experience for virtual reality services, Int. Telecomm. Union, CH-Geneva.
[ITU-T Rec. H.430.3, 2018] ITU-T Recommendation H:430.3 (2018). Service scenario of immersive live experience (ILE), Int. Telecomm. Union, CH-Geneva.
[ITU-T Rec. P.809, 2018] ITU-T Recommendation P:809 (2018). Subjective evaluation methods for gaming quality, Int. Telecomm. Union, CH-Geneva.
[Li, 2019] Li, J., Kong, Y., Röggla, T., De Simone, F., Ananthanarayan, S., De Ridder, H., … & Cesar, P. (2019, May). Measuring and understanding photo sharing experiences in social Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-14).
[Milgram, 1995] Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995, December). Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence technologies (Vol. 2351, pp. 282-292). International Society for Optics and Photonics.
[Nilsson, 2016] Nilsson, N. C., Nordahl, R., & Serafin, S. (2016). Immersion revisited: a review of existing definitions of immersion and their relation to different theories of presence. Human Technology, 12(2).
[Schubert, 2001] Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators & Virtual Environments, 10(3), 266-281.
[Slater, 1993] Slater, M., & Usoh, M. (1993). Representations systems, perceptual position, and presence in immersive virtual environments. Presence: Teleoperators & Virtual Environments, 2(3), 221-233.
[Toet, 2021] Toet, A., Mioch, T., Gunkel, S. N., Niamut, O., & van Erp, J. B. (2021). Holistic Framework for Quality Assessment of Mediated Social Communication.
[Slater, 2018] Slater, M. (2018). Immersion and the illusion of presence in virtual reality. British Journal of Psychology, 109(3), 431-433.
[White Paper, 2012] Qualinet White Paper on Definitions of Quality of Experience (2012). European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003), Patrick Le Callet, Sebastian Möller and Andrew Perkis, eds., Lausanne, Switzerland, Version 1.2, March 2013.
[White Paper, 2020] Perkis, A., Timmerer, C., Baraković, S., Husić, J. B., Bech, S., Bosse, S., … & Zadtootaghaj, S. (2020). QUALINET white paper on definitions of immersive media experience (IMEx). arXiv preprint arXiv:2007.07032.

MPEG Column: 135th MPEG Meeting (virtual/online)

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects.

The 135th MPEG meeting was once again held as an online meeting, and the official press release can be found here and comprises the following items:

  • MPEG Video Coding promotes MPEG Immersive Video (MIV) to the FDIS stage
  • Verification tests for more application cases of Versatile Video Coding (VVC)
  • MPEG Systems reaches first milestone for Video Decoding Interface for Immersive Media
  • MPEG Systems further enhances the extensibility and flexibility of Network-based Media Processing
  • MPEG Systems completes support of Versatile Video Coding and Essential Video Coding in High Efficiency Image File Format
  • Two MPEG White Papers:
    • Versatile Video Coding (VVC)
    • MPEG-G and its application of regulation and privacy

In this column, I’d like to focus on MIV and VVC including systems-related aspects as well as a brief update about DASH (as usual).

MPEG Immersive Video (MIV)

At the 135th MPEG meeting, MPEG Video Coding has promoted the MPEG Immersive Video (MIV) standard to the Final Draft International Standard (FDIS) stage. MIV was developed to support compression of immersive video content in which multiple real or virtual cameras capture a real or virtual 3D scene. The standard enables storage and distribution of immersive video content over existing and future networks for playback with 6 Degrees of Freedom (6DoF) of view position and orientation.

From a technical point of view, MIV is a flexible standard for multiview video with depth (MVD) that leverages the strong hardware support for commonly used video codecs to code volumetric video. The actual views may choose from three projection formats: (i) equirectangular, (ii) perspective, or (iii) orthographic. By packing and pruning views, MIV can achieve bit rates around 25 Mb/s and a pixel rate equivalent to HEVC Level 5.2.

The MIV standard is designed as a set of extensions and profile restrictions for the Visual Volumetric Video-based Coding (V3C) standard (ISO/IEC 23090-5). The main body of this standard is shared between MIV and the Video-based Point Cloud Coding (V-PCC) standard (ISO/IEC 23090-5 Annex H). It may potentially be used by other MPEG-I volumetric codecs under development. The carriage of MIV is specified through the Carriage of V3C Data standard (ISO/IEC 23090-10).

The test model and objective metrics are publicly available at https://gitlab.com/mpeg-i-visual.

At the same time, MPEG Systems has begun developing the Video Decoding Interface for Immersive Media (VDI) standard (ISO/IEC 23090-13) for a video decoders’ input and output interfaces to provide more flexible use of the video decoder resources for such applications. At the 135th MPEG meeting, MPEG Systems has reached the first formal milestone of developing the ISO/IEC 23090-13 standard by promoting the text to Committee Draft ballot status. The VDI standard allows for dynamic adaptation of video bitstreams to provide the decoded output pictures in such a way so that the number of actual video decoders can be smaller than the number of the elementary video streams to be decoded. In other cases, virtual instances of video decoders can be associated with the portions of elementary streams required to be decoded. With this standard, the resource requirements of a platform running multiple virtual video decoder instances can be further optimized by considering the specific decoded video regions that are to be actually presented to the users rather than considering only the number of video elementary streams in use.

Research aspects: It seems that visual compression and systems standards enabling immersive media applications and services are becoming mature. However, the Quality of Experience (QoE) of such applications and services is still in its infancy. The QUALINET White Paper on Definitions of Immersive Media Experience (IMEx) provides a survey of definitions of immersion and presence which leads to a definition of Immersive Media Experience (IMEx). Consequently, the next step is working towards QoE metrics in this domain that requires subjective quality assessments imposing various challenges during the current COVID-19 pandemic.

Versatile Video Coding (VVC) updates

The third round of verification testing for Versatile Video Coding (VVC) has been completed. This includes the testing of High Dynamic Range (HDR) content of 4K ultra-high-definition (UHD) resolution using the Hybrid Log-Gamma (HLG) and Perceptual Quantization (PQ) video formats. The test was conducted using state-of-the-art high-quality consumer displays, emulating an internet streaming-type scenario.

On average, VVC showed on average approximately 50% bit rate reduction compared to High Efficiency Video Coding (HEVC).

Additionally, the ISO/IEC 23008-12 Image File Format has been amended to support images coded using Versatile Video Coding (VVC) and Essential Video Coding (EVC).

Research aspects: The results of the verification tests are usually publicly available and can be used as a baseline for future improvements of the respective standards including the evaluation thereof. For example, the tradeoff compression efficiency vs. encoding runtime (time complexity) for live and video on-demand scenarios is always an interesting research aspect.

The latest MPEG-DASH Update

Finally, I’d like to provide a brief update on MPEG-DASH! At the 135th MPEG meeting, MPEG Systems issued a draft amendment to the core MPEG-DASH specification (i.e., ISO/IEC 23009-1) that provides further improvements of Preroll which is renamed to Preperiod and it will be further discussed during the Ad-hoc Group (AhG) period (please join the dash email list for further details/announcements). Additionally, this amendment includes some minor improvements for nonlinear playback. The so-called Technologies under Consideration (TuC) document comprises new proposals that did not yet reach consensus for promotion to any official standards documents (e.g., amendments to existing DASH standards or new parts). Currently, proposals for minimizing initial delay are discussed among others. Finally, libdash has been updated to support the MPEG-DASH schema according to the 5th edition.

An updated overview of DASH standards/features can be found in the Figure below.

MPEG-DASH status of July 2021.

Research aspects: The informative aspects of MPEG-DASH such as the adaptive bitrate (ABR) algorithms have been subject to research for many years. New editions of the standard mostly introduced incremental improvements but disruptive ideas rarely reached the surface. Perhaps it’s time to take a step back and re-think how streaming should work for todays and future media applications and services.

The 136th MPEG meeting will be again an online meeting in October 2021 but MPEG is aiming to meet in-person again in January 2021 (if possible). Click here for more information about MPEG meetings and their developments.