JPEG Column: 102nd JPEG Meeting in San Francisco, U.S.A.

Author: Antonio Pinheiro
Affiliation: Instituto de Telecomunicacoes (IT) and Universidade da Beira Interior (UBI), Covilha, Portugal

JPEG Trust reaches Draft International Standard stage

The 102nd JPEG meeting was held in San Francisco, California, USA, from 22 to 26 January 2024. At this meeting, JPEG Trust became a Draft International Standard. Moreover, the responses to the Call for Proposals of JPEG NFT were received and analysed. As a consequence, relevant steps were taken towards the definition of standardized tools for certification of the provenance and authenticity of media content in a time where tools for effective media manipulation should be made available to the general public. The 102nd JPEG meeting was finalised with the JPEG Emerging Technologies Workshop, at Tencent, Palo Alto on 27 January.

JPEG Emerging Technologies Workshop, organised on 27 January at Tencent, Palo Alto

The following sections summarize the main highlights of the 102nd JPEG meeting:

  • JPEG Trust reaches Draft International Standard stage;
  • JPEG AI improves the Verification Model;
  • JPEG Pleno Learning-based Point Cloud coding releases the Committee Draft;
  • JPEG Pleno Light Field continues development of Quality assessment tools;
  • AIC starts working on Objective Quality Assessment models for Near Visually Lossless coding;
  • JPEG XE prepares Common Test Conditions;
  • JPEG DNA evaluates its Verification Model;
  • JPEG XS 3rd edition parts are ready for publication as International standards;
  • JPEG XL investigate HDR compression performance.

JPEG Trust

At its 102nd meeting the JPEG Committee produced the DIS (Draft International Standard) of JPEG Trust Part 1 “Core Foundation” (21617-1). It is expected that the standard will be published as an International Standard during the Summer of 2024. This rapid standardization schedule has been necessary because of the speed at which fake media and misinformation are proliferating especially with respect to Generative AI.

The JPEG Trust Core Foundation specifies a comprehensive framework for individuals, organizations, and governing institutions interested in establishing an environment of trust for the media that they use, and for supporting trust in the media they share online. This framework addresses aspects of provenance, authenticity, integrity, copyright, and identification of assets and stakeholders. To complement Part 1, a proposed new Part 2 “Trust Profiles Catalogue” has been established. This new Part will specify a catalogue of Trust Profiles, targeting common usage scenarios.

During the meeting, the committee also evaluated responses received to the JPEG NFT Final Call for Proposals (CfP). Certain portions of the submissions will be incorporated in the JPEG Trust suite of standards to improve interoperability with respect to media tokenization. As a first step, the committee will focus on standardization of declarations of authorship and ownership.

Finally, the Use Cases and Requirements document for JPEG Trust was updated to incorporate additional requirements in respect of composited media. This document is publicly available on the JPEG website.

white paper describing the JPEG Trust framework is also available publicly on the JPEG website.

JPEG AI

At the 102nd JPEG meeting, the JPEG AI Verification Model was improved by integrating nearly all the contributions adopted at the 101st JPEG meeting. The major change is a multi-branch JPEG AI decoding architecture with two encoders and three decoders (6 possible compatible combinations) that have been jointly trained, which allows the coverage of encoder and decoder complexity-efficiency tradeoffs. The entropy decoding and latent prediction portion is common for all possible combinations and thus differences reside at the analysis/synthesis networks. Moreover, the number of models has been reduced to 4, both 4:4:4 and 4:2:0 coding is supported, and JPEG AI can now achieve better rate-distortion performance in some relevant use cases. A new training dataset has also been adopted with difficult/high-contrast/versatile images to reduce the number of artifacts and to achieve better generalization and color reproducibility for a wide range of situations. Other enhancements have also been adopted, namely feature clipping for decoding artifacts reduction, improved variable bit-rate training strategy and post-synthesis transform filtering speedups.

The resulting performance and complexity characterization show compression efficiency (BD-rate) gains of 12.5% to 27.9% over the VVC Intra anchor, for relevant encoder and decoder configurations with a wide range of complexity-efficiency tradeoffs (7 to 216 kMAC/px at the decoder side). For the CPU platform, the decoder complexity is 1.6x/3.1x times higher compared to VVC Intra (reference implementation) for the simplest/base operating point. At the 102nd meeting, 12 core experiments were established to further continue work related to different topics, namely about the JPEG AI high-level syntax, progressive decoding, training dataset, hierarchical dependent tiling, spatial random access, to mention the most relevant. Finally, two demonstrations were shown where JPEG AI decoder implementations were run on two smartphone devices, Huawei Mate50 Pro and iPhone14 Pro.

JPEG Pleno Learning-based Point Cloud coding

The 102nd JPEG meeting marked an important milestone for JPEG Pleno Point Cloud with the release of its Committee Draft (CD) for ISO/IEC 21794-Part 6 “Learning-based point cloud coding” (21794-6). Part 6 of the JPEG Pleno framework brings an innovative Learning-based Point Cloud Coding technology adding value to existing Parts focused on Light field and Holography coding. It is expected that a Draft International Standard (DIS) of Part 6 will be approved at the 104th JPEG meeting in July 2024 and the International Standard to be published during 2025. The 102nd meeting also marked the release of version 4 of the JPEG Pleno Point Cloud Verification Model updated to be robust to different hardware and software operating environments.

JPEG Pleno Light Field

The JPEG Committee has recently published a light field coding standard, and JPEG Pleno is constantly exploring novel light field coding architectures. The JPEG Committee is also preparing standardization activities – among others – in the domains of objective and subjective quality assessment for light fields, improved light field coding modes, and learning-based light field coding.

As the JPEG Committee seeks continuous improvement of its use case and requirements specifications, it organized a Light Field Industry Workshop. The presentations and video recording of the workshop that took place on November 22nd, 2023 are available on the JPEG website.

JPEG AIC

During the 102nd JPEG meeting, work on Image Quality Assessment continued with a focus on JPEG AIC-3, targeting standardizing a subjective visual quality assessment methodology for images in the range from high to nearly visually lossless qualities. The activity is currently investigating three different subjective image quality assessment methodologies.

The JPEG Committee also launched the activities on Part 4 of the standard (AIC-4), by initiating work on the Draft Call for Proposals on Objective Image Quality Assessment. The Final Call for Proposals on Objective Image Quality Assessment is planned to be released in July 2024, while the submission of the proposals is planned for October 2024.

JPEG XE

The JPEG Committee continued its activity on JPEG XE and event-based vision. This activity revolves around a new and emerging image modality created by event-based visual sensors. JPEG XE is about the creation and development of a standard to represent events in an efficient way allowing interoperability between sensing, storage, and processing, targeting machine vision and other relevant applications. The JPEG Committee is preparing a Common Test Conditions document that provides the means to perform an evaluation of candidate technology for the efficient coding of event sequences. The Common Test Conditions provide a definition of a reference format, a dataset, a set of key performance metrics and an evaluation methodology. In addition, the committee is preparing a Draft Call for Proposals on lossless coding, with the intent to make it public in April of 2024. Standardization will first start with lossless coding of event sequences as this seems to have the higher application urgency in industry. However, the committee acknowledges that lossy coding of event sequences is also a valuable feature, which will be addressed at a later stage. The public Ad-hoc Group on Event-based Vision was reestablished to continue the work towards the next 103rd JPEG meeting in April of 2024. To stay informed about the activities please join the event based imaging Ad-hoc Group mailing list.

JPEG DNA

During the 102nd JPEG meeting, the JPEG DNA Verification Model description and software were approved along with continued efforts to evaluate its rate-distortion characteristics. Notably, during the 102nd meeting, a subjective quality assessment was carried out by expert viewing using a new approach under development in the framework of AIC-3. The robustness of the Verification Model to errors generated in a biochemical process was also analysed using a simple noise simulator. After meticulous analysis of the results, it was decided to create a number of core experiments to improve the Verification Model rate-distortion performance and the robustness to the errors by adding an error correction technique to the latter. In parallel, efforts are underway to improve the rate-distortion performance of the JPEG DNA Verification Model by exploring learning-based coding solutions. In addition, further efforts are defined to improve the noise simulator so as to allow assessment of the resilience to noise in the Verification Model in more realistic conditions, laying the groundwork for a JPEG DNA robust to insertion, deletion and substitution errors.

JPEG XS

The JPEG Committee is happy to announce that the core parts of JPEG XS 3rd edition are ready for publication as International standards. The Final Draft International Standard for Part 1 of the standard – Core coding tools – was created at the last meeting in November 2023, and is scheduled for publication. DIS ballot results for Part 2 – Profiles and buffer models – and Part 3 – Transport and container formats – of the standard came back, allowing the JPEG Committee to produce and deliver the proposed IS texts to ISO. This means that Part 2 and Part 3 3rd edition are also scheduled for publication.

At this meeting, the JPEG Committee continued the work on Part 4 – Conformance testing, to provide the necessary test streams of the 3rd edition for potential implementors. A Committee Draft for Part 4 was issued. With Parts 1, 2, and 3 now ready, and Part 4 ongoing, the JPEG Committee initiated the 3rd edition of Part 5 – Reference software. A first Working Draft was prepared and work on the reference software will start.

Finally, experimental results were presented on how to use JPEG XS over 5G mobile networks for the transmission of low-latency and high quality 4K/8K 360 degree views with mobile devices. This use case was added at the previous JPEG meeting. It is expected that the new use case can already be covered by the 3rd edition, meaning that no further updates to the standard would be necessary. However, investigations and experimentation on this subject continue.

JPEG XL

The second edition of JPEG XL Part 3 (Conformance testing) has proceeded to the DIS stage. Work on a hardware implementation continues. Experiments are planned to investigate HDR compression performance of JPEG XL.

“In its efforts to provide standardized solutions to ascertain authenticity and provenance of the visual information, the JPEG Committee has released the Draft international Standard of the JPEG Trust. JPEG Trust will bring trustworthiness back to imaging with specifications under the governance of the entire International community and stakeholders as opposed to a small number of companies or countries.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Bookmark the permalink.