From Theory to Practice: System QoE Assessment by Providers


Service and network providers actively evaluate and derive Quality of Experience (QoE) metrics within their systems, which necessitates suitable monitoring strategies. Objective QoE monitoring involves mapping Quality of Service (QoS) parameters into QoE scores, such as calculating Mean Opinion Scores (MOS) or Good-or-Better (GoB) ratios, by using appropriate mapping functions. Alternatively, individual QoE monitoring directly assesses user experience based on self-reported feedback. We discuss the strengths, weaknesses, opportunities, and threats of both approaches. Based on the collected data from individual or objective QoE monitoring, providers can calculate the QoE metrics across all users in the system, who are subjected to a range of varying QoS conditions. The aggregated QoE across all users in the system for a dedicated time frame is referred to as system QoE. Based on a comprehensive simulation study, the expected system QoE, the system GoB ratio, as well as QoE fairness across all users are computed. Our numerical results explore whether objective and individual QoE monitoring lead to similar conclusions. In our previous work [Hoss2024], we provided a theoretical framework and the mathematical derivation of the corresponding relationships between QoS and system QoE for both monitoring approaches. Here, the focus is on illustrating the key differences of individual and objective QoE monitoring and the consequences in practice.

System QoE: Assessment of QoE of Users in a System

The term “System QoE” refers to the assessment of user experience from a provider’s perspective, focusing on the perceived quality of the users of a particular service. Thereby, providers may be different stakeholders along the service delivery chain, for example, network service provider and, in particular, Internet service provider, or application service provider. QoE monitoring delivers the necessary information to evaluate the system QoE, which is the basis for appropriate actions to ensure high-quality services and high QoE, e.g., through resource and network management.

Typically, QoE monitoring and management involves evaluating how well the network and services perform by analyzing objective metrics like Quality of Service (QoS) parameters (e.g., latency, jitter, packet loss) and mapping them to QoE metrics, such as Mean Opinion Scores (MOS). However, QoE monitoring involves a series of steps that providers need to follow: 1) identify relevant QoE metrics of interest, like MOS or GoB ratio; 2) deploy a monitoring framework to collect and analyze data. We will discuss this in the following.

The scope of system QoE metrics is to quantify the QoE across all users consuming the service for a dedicated time frame, e.g., one day, one week, or one month. Thereby, the expected QoE of an arbitrary user in the system, the ratio of all users experiencing Good-or-Getter (GoB) quality or Poor-or-Worse (PoW) quality, as well as the QoE fairness across all users are of interest. The users in the system may achieve different QoS on network level, e.g., different latency, jitter, throughput, since resources are shared among the users. The same is also true on application level with varying application-specific QoS parameters, for instance, video resolution, buffering time, or startup delays for video streaming. The varying QoS conditions manifest then in the system QoE. Fundamental relationships between the system QoE and QoS metrics were derived in [Hoss2020].

Expected system QoE: The expected system QoE is the average QoE rating of an arbitrary user in the system. The fundamental relationship in [Hoss2020] shows that the expected system QoE may be derived by mapping the QoS as experienced by a user to the corresponding MOS value and computing the average MOS over the varying QoS conditions. Thus, a MOS mapping function is required to map the QoS parameters to MOS values.

System GoB and System PoW: The Mean Opinion Score provides an average score but fails to account for the variability in users and the user rating diversity. Thus, users obtaining the same QoS conditions, may rate this subjectively differently. Metrics like the percentage of users rating the experience as Good or Better or as Poor or Worse provide more granular insights. Such metrics help service providers understand not just the average quality, but how quality is distributed across the user base. The fundamental relationship in [Hoss2020] shows that the system GoB and PoW may be derived by mapping the QoS as experienced by a user to the corresponding GoB or PoW value and computing the average over the varying QoS conditions, respectively. Thus, a GoB or PoW mapping function is required.

QoE Fairness: Operators must not only ensure that users are sufficiently satisfied, but also that this is done in a fair manner. However, what is considered fair in the QoS domain may not necessarily translate to fairness in the QoE domain, making the need to apply a QoE fairness index. [Hoss2018] defines the QoE fairness index as a linear transformation of the standard deviation of MOS values to the range [0;1]. The observed standard deviation is normalized with the maximal standard deviation, being theoretically possible for MOS values in a finite range, typically between 1 (poor quality) and 5 (excellent quality). The difference between 1 (indicating perfect fairness) and the normalized standard deviation of MOS values (indicating the degree of unfairness) yields the fairness index.

The fundamental relationships allow different implementations of QoE monitoring in practice, which are visualized in Figure 1 and discussed in the following. We differentiate between individual QoE monitoring and objective QoE monitoring and provide a qualitative strengths-weaknesses-opportunities-threats (SWOT) analysis.

Figure 1. QoE monitoring approaches to assess system QoE: individual and objective QoE monitoring.

Individual QoE Monitoring

Individual QoE monitoring refers to the assessment of system QoE by collecting individual ratings, e.g., on a 5-point rating scale, from users through their personal feedback. This approach captures the unique and individual nature of user experiences, accounting for factors like personal preferences and context. It allows optimizing services in a personalized manner, which is regarded as a challenging future research objective, see [Schmitt2017, Zhu2018, Gao2020, Yamazaki2021, Skorin-Kapov2018].

The term “individual QoE” was nicely described by in [Zhu2018]: “QoE, by definition, is supposed to be subjective and individual. However, we use the term ‘individual QoE’, since the majority of the literature on QoE has not treated it as such. […] The challenge is that the set of individual factors upon which an individual’s QoE depends is not fixed; rather this (sub)set varies from one context to another, and it is this what justifies even more emphatically the individuality and uniqueness of a user’s experience – hence the term ‘individual QoE’.”

Strengths: Individual QoE monitoring provides valuable insights into how users personally experience a service, capturing the variability and uniqueness of individual perceptions that objective metrics often miss. A key strength is that it gathers direct feedback from a provider’s own users, ensuring a representative sample rather than relying on external or unrepresentative populations. Additionally, it does not require a predefined QoE model, allowing for flexibility in assessing user satisfaction. This approach enables service providers to directly derive various system QoE metrics.

Weaknesses: Individual QoE monitoring is mainly feasible for application service providers and requires additional monitoring efforts beyond the typical QoS tools already in place. Privacy concerns are significant, as collecting sensitive user data can raise issues with data protection and regulatory compliance, such as with GDPR. Additionally, users may use the system primarily as a complaint tool, focusing on reporting negative experiences, which could skew results. Feedback fatigue is another challenge, where users may become less willing to provide ongoing input over time, limiting the validity and reliability of the data collected.

Opportunities: Data from individual QoE monitoring can be utilized to enhance individual user QoE through better resource and service management. From a business perspective, offering a personalized QoE can set providers apart in competitive markets and the data collected has monetization potential, supporting personalized marketing. Data from individual QoE monitoring enables deriving objective metrics like MOS or GoB, to update existing QoE models or to develop new QoE models for novel services by correlating it with QoS parameters. Those insights can drive innovation, leading to new features or services that meet evolving customer needs.

Threats: Individual QoE monitoring accounts for factors outside the provider’s control, such as environmental context (e.g., noisy surroundings [Reichl2015, Jiménez2020]), which may affect user feedback but not reflect actual service performance. Additionally, as mentioned, it may be used as a complaint tool, with users disproportionately reporting negative experiences. There is also the risk of over-engineering solutions by focusing too much on minor individual issues, potentially diverting resources from addressing more significant, system-wide challenges that could have a broader impact on overall service quality

Objective QoE Monitoring

Objective QoE monitoring involves assessing user experience by translating measurable QoS parameters on network level, such as latency, jitter, and packet loss, and on application level, such as video resolution or stalling duration for video streaming, into QoE metrics using predefined models and mapping functions. Unlike individual QoE monitoring, it does not require direct user feedback and instead relies on technically measurable parameters to estimate user satisfaction and various QoE metrics [Hoss2016]. Thereby, the fundamental relationships between system QoE and QoS [Hoss2020] are utilized. For computing the expected system QoE, a MOS mapping function is required, which maps a dedicated QoS value to a MOS value. For computing the system GoB, a GoB mapping function between QoS and GoB is required. Note that the QoS may be a vector of various QoS parameters, which are the input values for the mapping function.

Recent works [Hoss2022] indicated that industrial user experience index values, as obtained by the Threshold-Based Quality (TBQ) model for QoE monitoring, may be accurate enough to derive system QoE metrics. The TBQ model is a framework that defines application-specific thresholds for QoS parameters to assess and classify the user experience, which may be derived with simple and interpretable machine learning models like decision trees.

Strengths: Objective QoE monitoring relies solely on QoS monitoring, making it applicable for network providers, even for encrypted data streams, as long as appropriate QoE models are available, see for example [Juluri2015, Orsolic2020, Casas2022]. It can be easily integrated into existing QoS monitoring tools already deployed, reducing the need for additional resources or infrastructure. Moreover, it offers an objective assessment of user experience, ensuring that the same QoS conditions for different users are consistently mapped to the same QoE scores, as required for QoE fairness.

Weaknesses: Objective QoE monitoring requires specific QoE models and mapping functions for each desired QoE metric, which can be complex and resource-intensive to develop. Additionally, it has limited visibility into the full user experience, as it primarily relies on network-level metrics like bandwidth, latency, and jitter, which may not capture all factors influencing user satisfaction. Its effectiveness is also dependent on the accuracy of the monitored QoS metrics; inaccurate or incomplete data, such as from encrypted packets, can lead to misguided decisions and misrepresentation of the actual user experience.

Opportunities: Objective QoE monitoring enables user-centric resource and network management for application and network service providers by tracking QoS metrics, allowing for dynamic adjustments to optimize resource utilization and improve service delivery. The integration of AI and automation with QoS monitoring can increase the efficiency and accuracy of network management from a user-centric perspective. The objective QoE monitoring data can also enhance Service Level Agreements (SLAs) towards Experience Level Agreements (ELAs) as discussed in [Varela2015].

Threats: One risk of Objective QoE monitoring is the potential for incorrect traffic flow characterization, where data flows may be misattributed to the wrong applications, leading to inaccurate QoE assessments. Additionally, rapid technological changes can quickly make existing QoS monitoring tools and QoE models outdated, necessitating constant upgrades and investment to keep pace with new technologies. These challenges can undermine the accuracy and effectiveness of objective QoE monitoring, potentially leading to misinformed decisions and increased operational costs.

Numerical Results: Visualizing the Differences

In this section, we explore and visualize the obtained system QoE metrics, which are based on collected data either through i) individual QoE monitoring or ii) objective QoE monitoring. The question arises if the two monitoring approaches lead to the same results and conclusions for the provider. The obvious approach for computing the system QoE metrics is to use i) the individual ratings collected directly from the users and ii) the MOS scores obtained through mapping the objectively collected QoS parameters. While the discrepancies are derived mathematically in [Hoss2024], this article presents a visual representation of the differences between individual and objective QoE monitoring through a comprehensive simulation study. This simulation approach allows us to quantify the expected system QoE, the system GoB ratio, and the QoE fairness for a multitude of potential system configurations, which we manipulate in the simulation with varying QoS distributions. Furthermore, we demonstrate methods for utilizing data obtained through either individual QoE monitoring or objective QoE monitoring to accurately calculate the system QoE metrics as intended for a provider.

For the numerical results, the web QoE use case in [Hoss2024] is employed. We conduct a comprehensive simulation study, in which the QoS settings are varied. To be more precise, the page load times (PLTs) are varied, such that the users in the system experience a range of different loading times. For each simulation run, the average PLT and the standard deviation of the PLT across all users in the system are fixed. Then each user gets a randomly assigned PLT according to a beta distribution in the range between 0s and 8s with the specified average and standard deviation. The PLTs per user are sampled from that parameterized beta distribution.

For a concrete PLT, the corresponding user rating distribution is available and follows in our case a shifted binomial distribution, where the mean of the binomial distribution reflects the MOS value for that condition. To mention this clearly, this binomial distribution is a conditional random variable with discrete values on a 5-point scale: the user ratings are conditioned on the actual QoS value. For the individual QoE monitoring, the user ratings are sampled from that conditional random variable, while the QoS values are sampled from the beta distribution. For objective QoE monitoring, only the QoS values are used, but in addition, the MOS mapping function provided in [Hoss2024] is used. Thus, each QoS value is mapped to a continuous MOS value within the range of 1 to 5.

Figure 2 shows the expected system QoE using individual QoE monitoring as well as objective QoE monitoring depending on the average QoS as well as the standard deviation of the QoS, which is indicated by the color. Each point in the figure represents a single simulation run with a fixed average QoS and fixed standard deviation. It can be seen that both QoE monitoring approaches lead to the same results, which was also formally proven in [Hoss2024]. Note that higher QoS variances also result in higher expected system since for the same average QoS, there may be some users with larger QoS values, but also some users with lower QoS values. Due to the non-linear mapping between QoS and QoE this results in higher QoE scores.

Figure 3 shows the system GoB ratio, which can be simply computed with individual QoE monitoring. However, in the case of objective QoE monitoring, we assume that only a MOS mapping function is available. It is tempting to derive the GoB ratio by deriving the ratio of MOS values which are good or better. However, this leads to wrong results, see [Hoss2020]. Nevertheless, the GoB mapping function can be approximated from an existing MOS mapping function, see [Hoss2022, Hoss2017, Perez2023]. Then, the same conclusions are then derived through objective QoE monitoring as for individual QoE monitoring.

Figure 4 considers now QoE fairness for both monitoring approaches. It is tempting to use the user rating values from individual QoE monitoring and apply the QoE fairness index. However, in that case, the fairness index considers the variances of the system QoS and additionally the variances due to user rating diversity, as shown in [Hoss2024]. However, this is not the intended application of the QoE fairness index, which aims to evaluate the fairness objectively from a user-centric perspective, such that resource management can be adjusted and to provide users with high and fairly distributed quality. Therefore, the QoE fairness index uses MOS values, such that users with the same QoS are assigned the same MOS value. In a system with deterministic QoS conditions, i.e., the standard deviation diminishes, the QoE fairness index is 100%, see the results for the objective QoE monitoring. Nevertheless, the individual QoE monitoring also allows computing the MOS values for similar QoS values and then to apply the QoE fairness index. Then, comparable results are obtained as for objective QoE monitoring.

Figure 2. Expected system QoE when using individual and objective QoE monitoring. Both approaches lead to the same expected system QoE.
Figure 3. System GoB ratio: Deriving the ratio of MOS values which are good or better does not work for objective QoE monitoring. But an adjusted GoB computation, by approximating GoB through MOS, leads to the same conclusions as individual QoE monitoring, which simply measures the system GoB.
Figure 4. QoE Fairness: Using the user rating values obtained through individual QoE monitoring additionally includes the user rating diversity, which is not desired in network or resource management. However, individual QoE monitoring also allows computing the MOS values for similar QoS values and then to apply the QoE fairness index, which leads to comparable insights as objective QoE monitoring.

Conclusions

Individual QoE monitoring and objective QoE monitoring are fundamentally distinct approaches for assessing system QoE from a provider’s perspective. Individual QoE monitoring relies on direct user feedback to capture personalized experiences, while objective QoE monitoring uses QoS metrics and QoE models to estimate QoE metrics. Both methods have strengths and weaknesses, offering opportunities for service optimization and innovation while facing challenges such as over-engineering and the risk of models becoming outdated due to technological advancements, as summarized in our SWOT analysis. However, as the numerical results have shown, both approaches can be used with appropriate modifications and adjustments to derive various system QoE metrics like expected system QoE, system GoB and PoW ratio, as well as QoE fairness. A promising direction for future research is the development of hybrid approaches that combine both methods, allowing providers to benefit from objective monitoring while integrating the personalization of individual feedback. This could also be interesting to integrate in existing approaches like the QoS/QoE Monitoring Engine proposal [Siokis2023] or for upcoming 6G networks, which may allow the radio access network (RAN) to autonomously adjust QoS metrics in collaboration with the application to enhance the overall QoE [Bertenyi2024].

References

[Bertenyi2024] Berteny, B., Kunzmann, G., Nielsen, S., and Pedersen, K. Andres, P. (2024). Transforming the 6G vision to action. Nokia Whitepaper, 28 June 2024. Url: https://www.bell-labs.com/institute/white-papers/transforming-the-6g-vision-to-action/.

[Casas2022] Casas, P., Seufert, M., Wassermann, S., Gardlo, B., Wehner, N., & Schatz, R. (2022). DeepCrypt: Deep learning for QoE monitoring and fingerprinting of user actions in adaptive video streaming. In 2022 IEEE 8th International Conference on Network Softwarization (NetSoft) (pp. TBD). IEEE.

[Gao2020] Gao, Y., Wei, X., & Zhou, L. (2020). Personalized QoE improvement for networking video serviceIEEE Journal on Selected Areas in Communications38(10), 2311-2323.

[Hoss2016] Hoßfeld, T., Schatz, R., Egger, S., & Fiedler, M. (2016). QoE beyond the MOS: An in-depth look at QoE via better metrics and their relation to MOS. Quality and User Experience, 1, 1-23.

[Hoss2017] Hoßfeld, T., Fiedler, M., & Gustafsson, J. (2017, May). Betas: Deriving quantiles from MOS-QoS relations of IQX models for QoE management. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp. 1011-1016). IEEE.

[Hoss2018] Hoßfeld, T., Skorin-Kapov, L., Heegaard, P. E., & Varela, M. (2018). A new QoE fairness index for QoE management. Quality and User Experience, 3, 1-23.

[Hoss2020] Hoßfeld, T., Heegaard, P. E., Skorin-Kapov, L., & Varela, M. (2020). Deriving QoE in systems: from fundamental relationships to a QoE-based Service-level Quality IndexQuality and User Experience5(1), 7.

[Hoss2022] Hoßfeld, T., Schatz, R., Egger, S., & Fiedler, M. (2022). Industrial user experience index vs. quality of experience models. IEEE Communications Magazine, 61(1), 98-104.

[Hoss2024] Hoßfeld, T., & Pérez, P. (2024). A theoretical framework for provider’s QoE assessment using individual and objective QoE monitoring. In 2024 16th International Conference on Quality of Multimedia Experience (QoMEX) (pp. TBD). IEEE.

[Jiménez2020] Jiménez, R. Z., Naderi, B., & Möller, S. (2020, May). Effect of environmental noise in speech quality assessment studies using crowdsourcing. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.

[Juluri2015] Juluri, P., Tamarapalli, V., & Medhi, D. (2015). Measurement of quality of experience of video-on-demand services: A survey. IEEE Communications Surveys & Tutorials, 18(1), 401-418.

[Orsolic2020] Orsolic, I., & Skorin-Kapov, L. (2020). A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access, 8, 74691-74706.

[Perez2023] Pérez, P. (2023). The Transmission Rating Scale and its Relation to Subjective Scores. In 2023 15th International Conference on Quality of Multimedia Experience (QoMEX) (pp. 31-36). IEEE.

[Reichl2015] Reichl, P., et al. (2015, May). Towards a comprehensive framework for QoE and user behavior modelling. In 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.

[Schmitt2017] Schmitt, M., Redi, J., Bulterman, D., & César, P. (2017). Towards individual QoE for multiparty videoconferencing. IEEE Transactions on Multimedia, 20(7), 1781-1795.

[Siokis2023] Siokis, A., Ramantas, K., Margetis, G., Stamou, S., McCloskey, R., Tolan, M., & Verikoukis, C. V. (2023). 5GMediaHUB QoS/QoE monitoring engine. In 2023 IEEE 28th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. TBD). IEEE.

[Skorin-Kapov2018] Skorin-Kapov, L., Varela, M., Hoßfeld, T., & Chen, K. T. (2018). A survey of emerging concepts and challenges for QoE management of multimedia servicesACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)14(2s), 1-29.

[Varela2015] Varela, M., Zwickl, P., Reichl, P., Xie, M., & Schulzrinne, H. (2015, June). From service level agreements (SLA) to experience level agreements (ELA): The challenges of selling QoE to the user. In 2015 IEEE International Conference on Communication Workshop (ICCW) (pp. 1741-1746). IEEE.

[Yamazaki2021] Yamazaki, T. (2021). Quality of experience (QoE) studies: Present state and future prospectIEICE Transactions on Communications104(7), 716-724.

[Zhu2018] Zhu, Y., Guntuku, S. C., Lin, W., Ghinea, G., & Redi, J. A. (2018). Measuring individual video QoE: A survey, and proposal for future directions using social mediaACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)14(2s), 1-24.

Towards Immersive Digiphysical Experiences


Immersive experiences have the potential of redefining traditional forms of media engagement by intricately combining reality with imagination. Motivated by necessities, current developments and emerging technologies, this column sets out to bridge immersive experiences in both digital and physical realities. Fitting under the umbrella term of eXtended Reality (XR), the first section describes various realizations of blending digital and physical elements to design what we refer to as immersive digiphysical experiences. We further highlight industry and research initiatives related to driving the design and development of such experiences, considered to be key building-blocks of the futuristic ‘metaverse’. The second section outlines challenges related to assessing, modeling, and managing the Quality of Experience (QoE) of immersive digiphysical experiences and reflects upon ongoing work in the area. While potential use cases span a wide range of application domains, the third section elaborates on the specific case of conference organization, which has over the past few years spanned from fully physical, to fully virtual, and finally to attempts at hybrid organization. We believe this use case provides valuable insights into needs and promising approaches, to be demonstrated and experienced at the upcoming 16th edition of the International Conference on Quality of Multimedia Experience (QoMEX 2024) in Karlshamn, Sweden in June 2024.

Multiple users engaged in a co-located mixed reality experience

Bridging The Digital And Physical Worlds

According to [IMeX WP, 2020], immersive media have been described as involving “multi-modal human-computer interaction where either a user is immersed inside a digital/virtual space or digital/virtual artifacts become a part of the physical world”. Spanning the so-called virtuality continuum [Milgram, 1995], immersive media experiences may involve various realizations of bridging the digital and physical worlds, such as the seamless integration of digital content with the real world (via Augmented or Mixed Reality, AR/MR), and vice versa by incorporating real objects into a virtual environment (Augmented Virtuality, AV). More recently, the term eXtended Reality (XR) (also sometimes referred to as xReality) has been used as an umbrella term for a wide range of levels of “realities”, with [Rauschnabel, 2022] proposing a distinction between AR/MR and Virtual Reality (VR) based on whether the physical environment is, at least visually, part of the user’s experience.

By seamlessly merging digital and physical elements and supporting real-time user engagement with both digital and physical components, immersive digiphysical (i.e., both digitally and physically accessible [Westerlund, 2020]) experiences have the potential of providing compelling experiences blurring the distinction between the real and virtual worlds. A key aspect is that of digital elements responding to user input or the physical environment, and the physical environment responding to interactions with digital objects. Going beyond only visual or auditory stimuli, the incorporation of additional senses, for example via haptic feedback or olfactory elements, can contribute to multisensory engagement [Gibbs, 2022].

The rapid development of XR technologies has been recognized as a key contributor to realizing a wide range of applications built on the fusion of the digital and physical worlds [NEM WP, 2022]. In its contribution to the European XR Coalition (launched by the European Commission), the New European Media Initiative (NEM), Europe’s Technology Platform of Horizon 2020 dedicated to driving the future of digital experiences, calls for needed actions from both industry and research perspectives addressing challenges related to social and human centered XR as well as XR communication aspects [NEM XR, 2022]. One such initiative is the Horizon 2020 TRANSMIXR project [TRANSMIXR], aimed at developing a distributed XR creation environment that supports remote collaboration practices, as well as an XR media experience environment for the delivery and consumption of social immersive media experiences. The NEM initiative further identifies the need for scalable solutions to obtain plausible and convincing virtual copies of physical objects and environments, as well as solutions supporting seamless and convincing interaction between the physical and the virtual world. Among key technologies and infrastructures needed to overcome outlined challenges, the following are identified [NEM XR, 2022]: high bandwidth and low-latency energy-efficient networks; remote computing for processing and rendering deployed on cloud and edge infrastructures; tools for the creation and updating of digital twins (DT) to strengthen the link between the real and virtual worlds, integrating Internet of Things (IoT) platforms; hardware in the form of advanced displays; and various content creation tools relying on interoperable formats.

Merging the digital and physical worlds

Looking towards the future, immersive digiphysical experiences set the stage for visions of the metaverse [Wang, 2023], described as representing the evolution of the Internet towards a platform enabling immersive, persistent, and interconnected virtual environments blending digital and physical [Lee, 2021].[Wang, 2022] see the metaverse as `created by the convergence of physically persistent virtual space and virtually enhance physical reality’. The metaverse is further seen as a platform offering the potential to host real-time multisensory social interactions (e.g., involving sight, hearing, touch) between people communicating with each other in real-time via avatars [Hennig-Thurau, 2023]. As of 2022, the Metaverse Standards Forum is proving a venue for industry coordination fostering the development of interoperability standards for an open and inclusive metaverse [Metaverse, 2023]. Relevant existing standards include: ISO/IEC 23005 (MPEG-V) (standardization of interfaces between the real world and the virtual world, and among virtual worlds) [ISO/IEC 23055], IEEE 2888 (definition of standardized interfaces for synchronization of cyber and physical worlds) [IEEE 2888], and MPEG-I (standards to digitally represent immersive media) [ISO/IEC 23090].

Research Challenges For The Qoe Community

Achieving wide-spread adoption of XR-based services providing digiphysical experiences across a broad range of application domains (e.g., education, industry & manufacturing, healthcare, engineering, etc.) inherently requires ensuring intuitive, comfortable, and positive user experiences. While research efforts in meeting such requirements are well under way, a number of open challenges remain.

Quality of Experience (QoE) for immersive media has been defined as [IMeX WP, 2020]the degree of delight or annoyance of the user of an application or service which involves an immersive media experience. It results from the fulfillment of his or her expectations with respect to the utility and/or enjoyment of the application or service in the light of the user’s personality and current state.” Furthermore, a bridge between QoE and UX has been established through the concept of Quality of User Experience (QUX), combining hedonic, eudaimonic and pragmatic aspects of QoE and UX [Egger-Lampl, 2019]. In the context of immersive communication and collaboration services, significant efforts are being invested towards understanding and optimizing the end user experience [Perez, 2022].

The White Paper [IMeX WP, 2020] ties immersion to the digital media world (“The more the system blocks out stimuli from the physical world, the more the system is considered to be immersive.”). Nevertheless, immersion as such exists in physical contexts as well, e.g., when reading a captivating book. MR, XR and AV scenarios are digiphysical in their nature. These considerations pose several challenges:

  1. Achieving intuitive and natural interactive experiences [Hennig-Thurau, 2023] when mixing realities.
  2. Developing a common understanding of MR-, XR- and AV-related challenges in digiphysical multi-modal multi-party settings.
  3. Advancing VR, AR, MR, XR and AV technologies to allow for truly digiphysical experiences.
  4. Measuring and modeling QoE, UX and QUX for immersive digiphysical services, covering overall methodology, measurement instruments, modeling approaches, test environments and application domains.
  5. Management of the networked infrastructure to support immersive digiphysical experiences with appropriate QoE, UX and QUX.
  6. Sustainability considerations in terms of environmental footprint, accessibility, equality of opportunities in various parts of the world, and cost/benefit ratio.

Challenges 1 and 2 demand for an experience-based bottom-up approach to focus on the most important aspects. Examples include designing and evaluating different user representations [Aseeri, 2021][Viola, 2023], natural interaction techniques [Spittle, 2023] and use of different environments by participants (AR/MR/VR) [Moslavac, 2023]. The latter has shown beneficial for challenges 3 (cf. the emergence of MR-/XR-/AV-supporting head-mounted devices such as the Microsoft Hololens and recent pass-through versions of the Meta Quest) and 4. Finally, challenges 5 and 6 need to be carefully addressed to allow for long-term adoption and feasibility.

Challenges 1 to 4 have been addressed in standardization. For instance, ITU-T Recommendation P.1320 specifies QoE assessment procedures and metrics for the evaluation of XR telemeetings, outlining various categories of QoE influence factors and use cases [ITU-T Rec. P.1320, 2022] (adopted from the 3GPP technical report TR 26.928 on XR technology in 5G). The corresponding ITU-T Study Group 12 (Question 10) developed a taxonomy of telemeetings [ITU-T Rec. G.1092, 2023], providing a systematic classification of telemeeting systems. Ongoing joint efforts between the VQEG Immersive Media Group and ITU-T Study Group 12 are targeted towards specifying interactive test methods for subjective assessment of XR communications [ITU-T P.IXC, 2022].

The complexity of the aforementioned challenges demand for a combination of fundamental work, use cases, implementations, demonstrations, and testing. One specific use case that has shown its urge during recent years in combining digital and physical realities is that of hybrid conference organization, touching in particular on the challenge of achieving intuitive and natural interactions between remote and physically present participants. We consider this use case in detail in the following section, referring to the organization of the International Conference on Quality of Multimedia Experience (QoMEX) as an example.

Immersive Communication And Collaboration: The Case Of Conference Organization

What seemed to be impossible and was undesirable in the past, became a necessity overnight during the CoVid-19 pandemic: running conferences as fully virtual events. Many research communities succeeded in adapting ongoing conference organizations such that communities could meet, present, demonstrate and socialize online. The conference QoMEX 2020 is one such example, whose organizers introduced a set of innovative instruments to mutually interact and enjoy, such as virtual Mozilla Hubs spaces for poster presentations and a music session with prerecorded contributions mixed to form a joint performance to be enjoyed virtually together. A yet unknown inventiveness was observed to make the best out of the heavily travel-restricted situation. Furthermore, the technical approaches varied from off-the-shelf systems (such as Zoom or Teams) to custom-built applications. However, the majority of meetings during CoVid times, no matter scale and nature, were run in unnatural 2D on-screen settings. The frequently reported phenomenon of videoconference (VC) fatigue can be attributed to a set of personal, organizational, technical and environmental factors [Döring, 2022]. Indeed, talking to one’s computer with many faces staring back, limited possibilities to move freely, technostress [Brod, 1984] and organizational mishaps made many people tired of VC technology that was designed for a better purpose, but could not get close enough to a natural real-life experience.

As CoVid was on its retreat, conferences again became physical events and communities enjoyed meeting again, e.g., at QoMEX 2022. However, voices were raised that asked for remote participation for various reasons, such as time or budget restrictions, environmental sustainability considerations, or simply the comfort of being able to work from home. With remote participation came the challenge of bridging between in-person and remote participants, i.e., turning conferences into hybrid events [Bajpai, 2022]. However, there are many mixed experiences from hybrid conferences, both with onsite and online participants: (1) The onsite participants suffer from interruptions of the session flow needed to fix problems with the online participation tool. Their readiness to devote effort, time, and money to participate in a future hybrid event in person might suffer from such issues, which in turn would weaken the corresponding communities; (2) The online participants suffer from similar issues, where sound irregularities (echo, excessive sound volumes, etc.) are felt to be particularly disturbing, along with feelings of being not properly included e.g., in Q&A-sessions and personal interactions. At both ends, clear signs of technostress and “us-and-them” feelings can be observed. Consequently, and despite good intentions and advice [Bajpai, 2022], any hybrid conference might miss its main purpose to bring researchers together to present, discuss and socialize. To avoid the above-listed issues, the post-CoVid QoMEX conferences (since 2022) avoided hybrid operations, with few exceptions.

A conference is a typical case that reveals difficulties in bringing the physical and digital worlds together [Westerlund, 2020], at least when relying upon state-of-the-art telemeeting approaches that have not explicitly been designed for hybrid and digiphysical operations. At the recent 26th ACM Conference on Computer-Supported Cooperative Work And Social Computing in Minneapolis, USA (CSCW 2023), one of the panel sessions focused on “Realizing Values in Hybrid Environments”. Panelists and audience shared experiences about successes and failures with hybrid events. The main take-aways were as follows: (1) there is a general lack of know-how, no matter how much funds are allocated, and (2) there is a significant demand for research activities in the area.

Yet, there is hope, as increasingly many VR, MR, XR and AV-supporting devices and applications keep emerging, enabling new kinds and representations of immersive experiences. In a conference context, the latter implies the feeling of “being there”, i.e., being integrated in the conference community, no matter where the participant is located. This calls for new ways of interacting amongst others through various realities (VR/MR/XR), which need to be invented, tried and evaluated in order to offer new and meaningful experiences in telemeeting scenarios [Viola, 2023]. Indeed, CSCW 2023 hosted a specific workshop titled “Emerging Telepresence Technologies for Hybrid Meetings: an Interactive Workshop”, during which visions, experiences, and solutions were shared and could be experienced locally and remotely. About half of the participants were online, successfully interacting with participants onsite via various techniques.

With these challenges and opportunities in mind, the motto of QoMEX 2024 has been set as “Towards immersive digiphysical experiences.” While the conference is organized as an in-person event, a set of carefully selected hybrid activities will be offered to interested remote participants, such as (1) 360° stereoscopic streaming of the keynote speeches and demo sessions, and (2) the option to take part in so-called hybrid experience demos. The 360° stereoscopic streaming has so far been tested successfully in local, national and transatlantic sessions (during the above-mentioned CSCW workshop) with various settings, and further fine-tuning will be done and tested before the conference. With respect to the demo session – and in addition to traditional onsite demos – this year, the conference will in particular solicit hybrid experience demos that enable both onsite and remote participants to test the demo in an immersive environment. Facilities will also be provided for onsite participants to test demos from both the perspective of a local and remote user, enabling them to experience different roles. The organizers of QoMEX 2024 hope that the hybrid activities of QoMEX 2024 will trigger more research interest in these areas along and beyond the classical lines of QoE research (to perform quantitative subjective studies of QoE features and correlating them with QoE factors).

QoMEX 2024: Towards Immersive Digiphysical Experiences

Concluding Remarks

As immersive experiences extend into both digital and physical worlds and realities, there is a great space to conquer for QoE, UX, and QUX-related research. While the recent CoVid pandemic has forced many users to replace physical with digital meetings and sustainability considerations have reduced many peoples’ and organizations’ readiness to (support) travel, shortcomings of hybrid digiphysical meetings have failed to persuade their participants of their superiority over pure online or on-site meetings. Indeed, one promising path towards a successful integration of physical and digital worlds consists of trying out, experiencing, reflecting, and deriving important research questions for and beyond the QoE research community The upcoming conference QoMEX 2024 will be a stop along this road with carefully selected hybrid experiences aimed at boosting research and best practice in the QoE domain towards immersive digiphysical experiences.

References

  • [Aseeri, 2021] Aseeri, S., & Interrante, V. (2021). The Influence of Avatar Representation on Interpersonal Communication in Virtual Social Environments. IEEE Transactions on Visualization and Computer Graphics, 27(5), 2608-2617.
  • [Bajpai, 2022] Bajpai, V., et al.. (2022). Recommendations for designing hybrid conferences. ACM SIGCOMM Computer Communication Review, 52(2), 63-69.
  • [Brod, 1984] Brod, C. (1984). Technostress: The Human Cost of the Computer Revolution. Basic Books; New York, NY, USA: 1984.
  • [Döring, 2022] Döring, N., Moor, K. D., Fiedler, M., Schoenenberg, K., & Raake, A. (2022). Videoconference Fatigue: A Conceptual Analysis. International Journal of Environmental Research and Public Health, 19(4), 2061.
  • [Egger-Lampl, 2019] Egger-Lampl, S., Hammer, F., & Möller, S. (2019). Towards an integrated view on QoE and UX: adding the Eudaimonic Dimension, ACM SIGMultimedia Records, 10(4):5.
  • [Gibbs, 2022] Gibbs, J. K., Gillies, M., & Pan, X. (2022). A comparison of the effects of haptic and visual feedback on presence in virtual reality. International Journal of Human-Computer Studies, 157, 102717.
  • [Hennig-Thurau, 2023] Hennig-Thurau, T., Aliman, D. N., Herting, A. M., Cziehso, G. P., Linder, M., & Kübler, R. V. (2023). Social Interactions in the Metaverse: Framework, Initial Evidence, and Research Roadmap. Journal of the Academy of Marketing Science, 51(4), 889-913.
  • [IMeX WP, 2020] Perkis, A., Timmerer, C., et al., “QUALINET White Paper on Definitions of Immersive Media Experience (IMEx)”, European Network on Quality of Experience in Multimedia Systems and Services, 14th QUALINET meeting (online), May 25, 2020. Online: https://arxiv.org/abs/2007.07032
  • [ISO/IEC 23055] ISO/IEC 23005 (MPEG-V) standards, Media Context and Control, https://mpeg.chiariglione.org/standards/mpeg-v, accessed January 21, 2024.
  • [ISO/IEC 23090] ISO/IEC 23090 (MPEG-I) standards, Coded representation of Immersive Media, https://mpeg.chiariglione.org/standards/mpeg-i, accessed January 21, 2024.
  • [IEEE 2888] IEEE 2888 standards, https://sagroups.ieee.org/2888/, accessed January 21, 2024.
  • [ITU-T Rec.. G.1092, 2023] ITU-T Recommendation G.1092 – Taxonomy of telemeetings from a quality of experience perspective, Oct. 2023.
  • [ITU-T Rec. P.1320, 2022] ITU-T Recommendation P.1320 – QoE assessment of extended reality (XR) meetings, 2022.
  • [ITU-T P.IXC, 2022] ITU-T Work Item: Interactive test methods for subjective assessment of extended reality communications, under study,” 2022.
  • [Lee, 2021] Lee, L. H. et al. (2021). All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda. arXiv preprint arXiv:2110.05352.
  • [Metaverse, 2023] Metaverse Standards Forum, https://metaverse-standards.org/
  • [Milgram, 1995] Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995, December). Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence technologies (Vol. 2351, pp. 282-292). International Society for Optics and Photonics.
  • [Moslavac, 2023] Moslavac, M., Brzica, L., Drozd, L., Kušurin, N., Vlahović, S., & Skorin-Kapov, L. (2023, July). Assessment of Varied User Representations and XR Environments in Consumer-Grade XR Telemeetings. In 2023 17th International Conference on Telecommunications (ConTEL) (pp. 1-8). IEEE.
  • [Rauschnabel, 2022] Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., & Alt, F. (2022). What is XR? Towards a Framework for Augmented and Virtual Reality. Computers in human behavior, 133, 107289.
  • [NEM WP, 2022] New European Media (NEM), NEM: List of topics for the Work Program 2023-2024.
  • [NEM XR, 2022] New European Media (NEM), NEM contribution to the XR coalition, June 2022.
  • [Perez, 2022] Pérez, P., Gonzalez-Sosa, E., Gutiérrez, J., & García, N. (2022). Emerging Immersive Communication Systems: Overview, Taxonomy, and Good Practices for QoE Assessment. Frontiers in Signal Processing, 2, 917684.
  • [Spittle, 2023] Spittle, B., Frutos-Pascual, M., Creed, C., & Williams, I. (2023). A Review of Interaction Techniques for Immersive Environments. IEEE Transactions on Visualization and Computer Graphics, 29(9), Sept. 2023.
  • [TRANSMIXR] EU HORIZON 2020 TRANSMIXR project, Ignite the Immersive Media Sector by Enabling New Narrative Visions, https://transmixr.eu/
  • [Viola, 2023] Viola, I., Jansen, J., Subramanyam, S., Reimat, I., & Cesar, P. (2023). VR2Gather: A Collaborative Social VR System for Adaptive Multi-Party Real-Time Communication. IEEE MultiMedia, 30(2).
  • [Wang 2023] Wang, H. et al. (2023). A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges. IEEE Internet of Things Journal, 10(16).
  • [Wang, 2022] Wang, Y. et al. (2022). A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE Communications Surveys & Tutorials, 25(1).
  • [Westerlund, 2020] Westerlund, T. & Marklund, B. (2020). Community pharmacy and primary health care in Sweden – at a crossroads. Pharm Pract (Granada), 18(2): 1927.

Explainable Artificial Intelligence for Quality of Experience Modelling

Data-driven Quality of Experience (QoE) modelling using Machine Learning (ML) arose as a promising alternative to the cumbersome and potentially biased manual QoE modelling. However, the reasoning of a majority of ML models is not explainable due to their black-box characteristics, which prevents us from gaining insights about how the model actually related QoE influence factors and QoE. These fundamental relationships are highly relevant for QoE researchers and service and network providers though.

With the emerging field of eXplainable Artificial Intelligence (XAI) and its recent technological advances, these issues can now be resolved. As a consequence, XAI enables data-driven QoE modelling to obtain generalizable QoE models and provides us simultaneously with the model’s reasoning on which QoE factors are relevant and how they affect the QoE score. In this work, we showcase the feasibility of explainable data-driven QoE modelling for video streaming and web browsing, before we discuss the opportunities and challenges of deploying XAI for QoE modelling.

Introduction

In order to enhance services and networks and prevent users from switching to competitors, researchers and service providers need a deep understanding of the factors that influence the Quality of Experience (QoE) [1]. However, developing an effective QoE model is a complex and costly endeavour. Typically, it requires dedicated and extensive studies, which can only cover a limited portion of the parameter space and may be influenced by the study design. These studies often generate a relatively small sample of QoE ratings from a comparatively small population, making them vulnerable to poor performance when applied to unseen data. Moreover, the process of collecting and processing data for QoE modelling is not only arduous and time-consuming, but it can also introduce biases and self-fulfilling prophecies, such as perceiving an exponential relationship when one is expected.

To overcome these challenges, data-driven QoE modelling utilizing machine learning (ML) has emerged as a promising alternative, especially in scenarios where there is a wealth of data available or where data streams can be continuously obtained. A notable example is the ITU-T standard P.1203 [2], which estimates video streaming QoE by combining manual modelling – accounting for 75% of the Mean Opinion Score (MOS) estimation – and ML-based Random Forest modelling – accounting for the remaining 25%. The inclusion of the ML component in P.1203 indicates its ability to enhance performance. However, the inner workings of P.1203’s Random Forest model, specifically how it calculates the output score, are not obvious. Also, the survey in [3] shows that ML-based QoE modelling in multimedia systems is already widely used, including Virtual Reality, 360-degree video, and gaming. However, the QoE models are based on shallow learning methods, e.g., Support Vector Machines (SVM), or on deep learning methods, which lack explainability. Thus, it is difficult to understand what QoE factors are relevant and how they affect the QoE score [13], resulting in a lack of trust in data-driven QoE models and impeding their widespread adoption by researchers and providers [14].

Fortunately, recent advancements in the field of eXplainable Artificial Intelligence (XAI) [6] have paved the way for interpretable ML-based QoE models, thereby fostering trust between stakeholders and the QoE model. These advancements encompass a diverse range of XAI techniques that can be applied to existing black-box models, as well as novel and sophisticated ML models designed with interpretability in mind. Considering the use case of modelling video streaming QoE from real subjective ratings, the work in [4] evaluates the feasibility of explainable, data-driven QoE modelling and discusses the deployment of XAI for QoE research.

The utilization of XAI for QoE modelling brings several benefits. Not only does it speed up the modelling process, but it also enables the identification of the most influential QoE factors and their fundamental relationships with the Mean Opinion Score (MOS). Furthermore, it helps eliminate biases and preferences from different research teams and datasets that could inadvertently influence the model. All that is required is a selective dataset with descriptive features and corresponding QoE ratings (labels), which covers the most important QoE influence factors and, in particular, also rare events, e.g., many stalling events in a session. Generating such complete datasets, however, is an open research question, but calls for data-centric AI [15]. By merging datasets from various studies, more robust and generalizable QoE models can theoretically be created. These studies need to have a common ground though. Another benefit is the fact that the models can also be automatically refined over time as new QoE studies are conducted and additional data becomes available.

XAI: eXplainable Artificial Intelligence

For a comprehensive understanding of eXplainable Artificial Intelligence (XAI), a general overview can be found in [5], while a thorough survey on XAI methods and a taxonomy of XAI methods, in general, is available in [6].

XAI methods can be categorized into two main types: local and global explainability techniques. Local explainability aims to provide explanations for individual stimuli in terms of QoE factors and QoE ratings. On the other hand, global explainability focuses on offering general reasoning for how a model derives the QoE rating from the underlying QoE factors. Furthermore, XAI methods can be classified into post-hoc explainers and interpretable models.

Post-hoc explainers [6] are commonly used to explain various black-box models, such as neural networks or ensemble techniques after they have been trained. One widely utilized post-hoc explainer is SHAP values [7], which originates from game theory. SHAP values quantify the contribution of each feature to the model’s prediction by considering all possible feature subsets and learning a model for each subset. Other post-hoc explainers include LIME and Anchors, although they are limited to classification tasks.

Interpretable models, by design, provide explanations for how the model arrives at its output. Well-known interpretable models include linear models and decision trees. Additionally, generalized additive models (GAM) are gaining recognition as interpretable models.

A GAM is a generalized linear model in which the model output is computed by summing up each of the arbitrarily transformed input features along with a bias [8]. The form of a GAM enables a direct interpretation of the model by analyzing the learned functions and the transformed inputs, which allows to estimate the influence of a feature. Two state-of-the-art ML-based GAM models are Explainable Boosting Machine (EBM) [9] and Neural Additive Model (NAM) [8]. While EBM uses decision trees to learn the functions and gradient boosting to improve training, NAM utilizes arbitrary neural networks to learn the functions, resulting in a neural network architecture with one sub-network per feature. EBM extends GAM by also considering additional pairwise feature interaction terms while maintaining explainability.

Exemplary XAI-based QoE Modelling using GAMs

We demonstrate the learned predictor functions for both EBM (red) and NAM (blue) on a video QoE dataset in Figure 1. All technical details about the dataset and the methodology can be found in [4]. We observe that both models provide smooth shape functions, which are easy to interpret. EBM and NAM differ only marginally and mostly in areas where the data density is low. Here, EBM outperforms NAM by overfitting on single data points using the feature interaction terms. We can see this, for example, for a high total stalling duration and a high number of quality switches, where at some point EBM stops the negative trend and strongly contrasts its previous trend to improve predictions for extreme outliers.

Figure 1: EBM and NAM for video QoE modelling

Using the smooth predictor functions, it is easy to apply curve fitting. In the bottom right plot of Figure 1, we fit the average bitrate predictor function of NAM, which was shifted by the average MOS of the dataset to obtain the original MOS scale on the y-axis, on an inverted x-axis using exponential (IQX), logarithmic (WQL), and linear functions (LIN). Note that this constitutes a univariate mapping of average bitrate to MOS, neglecting the other influencing factors. We observe that our predictor function follows the WQL hypothesis [10] (red) with a high R²=0.967. This is in line with the mechanics of P.1203, where the authors of [11] showed the same logarithmic behavior for the bitrate in mode 0.

Figure 2: EBM and NAM for web QoE modelling

As the presented XAI methods are universally applicable to any QoE dataset, Figure 2 shows a similar GAM-based QoE modelling for a web QoE dataset obtained from [12]. We can see that the loading behavior in terms of ByteIndex-Page Load Time (BI-PLT) and time to last byte (TTLB) has the strongest impact on web QoE. Moreover, we see that different URLs/webpages have a different effect on the MOS, which shows that web QoE is content dependent. Summarizing, using GAMs, we obtain valuable easy to interpret functions, which explain fundamental relationships between QoE factors and MOS. Nevertheless, further XAI methods can be utilized, as detailed in [4,5,6].

Discussion

In addition to expediting the modelling process and mitigating modelling biases, data-driven QoE modelling offers significant advantages in terms of improved accuracy and generalizability compared to manual QoE models. ML-based models are not constrained to specific classes of continuous functions typically used in manual modelling, allowing them to capture more complex relationships present in the data. However, a challenge with ML-based models is the risk of overfitting, where the model becomes overly sensitive to noise and fails to capture the underlying relationships. Overfitting can be avoided through techniques like model regularization or by collecting sufficiently large or complete datasets.

Successful implementation of data-driven QoE modelling relies on purposeful data collection. It is crucial to ensure that all (or at least the most important) QoE factors are included in the dataset, covering their full parameter range with an adequate number of samples. Controlled lab or crowdsourcing studies can define feature values easily, but budget constraints (time and cost) often limit data collection to a small set of selected feature values. Conversely, field studies can encompass a broader range of feature values observed in real-world scenarios, but they may only gather limited data samples for rare events, such as video sessions with numerous stalling events. To prevent data bias, it is essential to balance feature values, which may require purposefully generating rare events in the field. Additionally, thorough data cleaning is necessary. While it is possible to impute missing features resulting from measurement errors, doing so increases the risk of introducing bias. Hence, it is preferable to filter out missing or unusual feature values.

Moreover, adding new data and retraining an ML model is a natural and straightforward process in data-driven modelling, offering long-term advantages. Eventually, data-driven QoE models would be capable of handling concept drift, which refers to changes in the importance of influencing factors over time, such as altered user expectations. However, QoE studies are rarely conducted as temporal and population-based snapshots, limiting frequent model updates. Ideally, a pipeline could be established to provide a continuous stream of features and QoE ratings, enabling online learning and ensuring the QoE models remain up to date. Although challenging for research endeavors, service providers could incorporate such QoE feedback streams into their applications

Comparing black-box and interpretable ML models, there is a slight trade-off between performance and explainability. However, as shown in [4], it should be negligible in the context of QoE modelling. Instead, XAI allows to fully understand the model decisions, identifying relevant QoE factors and their relationships to the QoE score. Nevertheless, it has to be considered that explaining models becomes inherently more difficult when the number of input features increases. Highly correlated features and interactions may further lead to misinterpretations when using XAI since the influence of a feature may also depend on other features. To obtain reliable and trustworthy explainable models, it is, therefore, crucial to exclude highly correlated features.

Finally, although we demonstrated XAI-based QoE modelling only for video streaming and web browsing, from a research perspective, it is important to understand that the whole process is easily applicable in other domains like speech or gaming. Apart from that, it can also be highly beneficial for providers of services and networks to use XAI when implementing a continuous QoE monitoring. They could integrate visualizations of trends like Figure 1 or Figure 2 into dashboards, thus, allowing to easily obtain a deeper understanding of the QoE in their system.

Conclusion

In conclusion, the progress in technology has made data-driven explainable QoE modeling suitable for implementation. As a result, it is crucial for researchers and service providers to consider adopting XAI-based QoE modeling to gain a comprehensive and broader understanding of the factors influencing QoE and their connection to users’ subjective experiences. By doing so, they can enhance services and networks in terms of QoE, effectively preventing user churn and minimizing revenue losses.

References

[1] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N. Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi et al., “Qualinet White Paper on Definitions of Quality of Experience,” 2013.

[2] W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia et al., “HTTP Adaptive Streaming QoE Estimation with ITU-T Rec. P. 1203: Open Databases and Software,” in ACM MMSys, 2018

[3] G. Kougioumtzidis, V. Poulkov, Z. D. Zaharis, and P. I. Lazaridis, “A Survey on Multimedia Services QoE Assessment and Machine Learning-Based Prediction,” IEEE Access, 2022.

[4] N. Wehner, A. Seufert, T. Hoßfeld, M. and Seufert, “Explainable Data-Driven QoE Modelling with XAI,” QoMEX, 2023.

[5] C. Molnar, Interpretable Machine Learning, 2nd ed., 2022. Available: https://christophm.github.io/interpretable-ml-book

[6] A. B. Arrieta, N. Diıaz-Rodriguez et al., “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI,” Information fusion, 2020.

[7] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” NIPS, 2017.

[8] R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton, “Neural Additive Models: Interpretable MachineLearning with Neural Nets,” NIPS, 2021.

[9] H. Nori, S. Jenkins, P. Koch, and R. Caruana, “InterpretML: A Unified Framework for Machine Learning Interpretability,” arXiv preprint arXiv:1909.09223, 2019.

[10] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, “Internet Video Delivery in YouTube: From Traffic Measurements to Quality of Experience,” in Data Traffic Monitoring and Analysis, 2013.

[11] M. Seufert, N. Wehner, and P. Casas, “Studying the Impact of HAS QoE Factors on the Standardized Qoe Model P. 1203,” in ICDCS, 2018

[12] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, D. Rossi, “Narrowing the gap between QoS metrics and Web QoE using Above-the-fold metrics,” PAM, 2018

[13] A. Seufert, F. Wamser, D. Yarish, H. Macdonald, and T. Hoßfeld, “QoE Models in the Wild: Comparing Video QoE Models Using a Crowdsourced Data Set”, in QoMEX, 2021

[14] D. Shin, “The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI”, in International Journal of Human-Computer Studies, 2021.

[15] D. Zha, Z. P. Bhat, K. H. Lai, F. Yang, & X. Hu, “Data-centric ai: Perspectives and challenges”, in SIAM International Conference on Data Mining, 2023

Sustainability vs. Quality of Experience: Striking the Right Balance for Video Streaming

The exponential growth in internet data traffic, driven by the widespread use of video streaming applications, has resulted in increased energy consumption and carbon emissions. This outcome is primarily due to higher resolution or higher framerates content and the ability to watch videos on various end-devices. However, efforts to reduce energy consumption in video streaming services may have unintended consequences on users’ Quality of Experience (QoE). This column delves into the intricate relationship between QoE and energy consumption, considering the impact of different bit rates on end-devices. We also consider other factors to provide a more comprehensive understanding of whether these end-devices have a significant environmental impact. It is essential to carefully weigh the trade-offs between QoE and energy consumption to make informed decisions and develop sustainable practices in video streaming services.

Energy Consumption for Video Streaming

In the past few years, we have seen a remarkable expansion in how online content is delivered. According to Sandvine’s 2023 Global Internet Phenomena Report [1], video usage on the Internet has increased by 24% in 2022 and now accounts for 65% of all Internet traffic. This surge in video usage is mainly due to the growing popularity of streaming video services. Videos have become an increasingly popular form of online content, capturing a significant portion of internet users’ attention and shaping how we consume information and entertainment online. Therefore, the rising quality expectations of end-users have necessitated research and implementation of video streaming management approaches that consider the Quality of Experience (QoE) [2]. The idea is to develop applications that can work within the energy and resource limits of end-devices, while still delivering the Quality of Service (QoS) needed for smooth video viewing and an improved user experience (QoE). Even though video streaming services are advancing so quickly, energy consumption is still a significant issue causing many concerns about its impact and the urgent need to boost energy efficiency [14].

The literature provides four main elements: the data centres, the data transmission networks, the end-devices and the consumer behaviour analysing of the energy consumption of video streaming [3]. In this regard, in [4], the authors present a comprehensive review of existing literature on the energy consumption of online video streaming services. Then, they outline the potential actions that can be taken by both service providers and consumers to promote sustainable video streaming, drawing from the literature studies discussed. Their summary of the current possible actions for sustainable video streaming, from both the provider’s and consumer’s perspective, is expressed in the following segments with some of the possible solutions:

  • Data center: CDN (Content Delivery Network) can be utilized to offload contents/applications to the edge from the provider’s side and choose providers that prioritize sustainability from the consumer’s side.
  • Data transmission network: Data compression/encoding algorithms from the provider’s side and no autoplay from the consumer’s side.
  • End-Device: Produce energy-efficient devices from the provider’s size and prefer small-size (mobile) devices from the consumer’s side.
  • Consumer behaviour: Reduce the number of subscribers from the provider’s size and prefer watching videos with other people than alone from the consumer’s side.

Finally, they noted that the end device and consumer behaviour are the primary contributors to energy costs in the video streaming process. This result includes actions such as reducing video resolution and using smaller devices. However, taking such actions may have a potential downside as they can negatively impact the QoE due to their effect on video quality. Therefore, in [5], they found that by sacrificing the maximum QoE and aiming for good quality instead (e.g., MOS score of 4=Good instead of MOS score 5=Excellent), significant energy savings can be achieved in video-conferencing services. This is possible by using lower video bitrates compared to higher bitrates which result in higher energy consumption, as per their logarithmic QoE model. Regarding this research, in [4], the authors propose identifying an acceptable level of QoE, rather than striving for maximum QoE, as a potential solution to reduce energy consumption while still meeting consumer satisfaction. They conducted a crowdsourcing survey to gather real consumer opinions on their willingness to save energy consumption while streaming online videos. Then, they analysed the survey results to understand how willing people are to lower video streaming quality in order to achieve energy savings.

Green Video Streaming: The Trade-Off Between QoE and Energy Consumption

To provide a trade-off between QoE and Energy Consumption, we looked at the connection between video bitrate of standard resolution, electricity usage, and perceived QoE for a video streaming service on four different devices (smartphone, tablet, laptop/PC, and smart TV) as taken from [4].

They calculated the energy consumption of streaming on devices which is provided in [6]: Q_i = t_i.(P_i+R_i.ƿ), in the given equation, Q_i represents the electricity consumption (in kWh) of the i-th device, t_i denotes the streaming duration (in hours per week) for the i-th device, P_i represents the power load (in kW) of the i-th device, R_i signifies the data traffic (in GB/h) for a specific bitrate, and ρ = 0.1 kWh/GB represents the electricity intensity of data traffic.

Then,  to estimate the perceived QoE based on the video bitrate, the authors employed a QoE model from [7], as noted in their analysis which is: QoE = a.br^b + c, where “br” represents the bitrate, and “a”, “b”, and “c” are the regression coefficients calculated for specific resolutions.

After taking this into account, we can establish a link between the QoE model, energy consumption, and the perceived QoE associated with video bitrate across various end-devices. Therefore, we implemented the green QoE model in [8] to provide a trade-off between the perceived QoE and the calculated energy consumption from above in the following way: f_γ(x)= 4/(log(x’_5)-log(x_1))*log(x)+ (log(x’_5)-5*log(x_1))/(log(x’_5)-log(x_1)). The given equation represents the mapping function between video bitrate and Mean Opinion Scores (MOS), considering both the minimum bitrate x_1 corresponding to MOS 1 and the maximum bitrate x_5 corresponding to MOS 5. Moreover, the factor γ, representing the greenness of a user, is considered in the context of maximum bitrate x’_5 = x_5/γ, which results in a MOS score of 5.

The model focuses on the concept of a “green user,” who considers the energy consumption aspect in their overall QoE evaluations. Thus, a green user might rate their QoE slightly lower in order to reduce their carbon footprint compared to a high-quality (HQ) user (or “non-green” user) who prioritizes QoE without considering energy consumption.

The numerical results for the energy consumption (in kWh) and the MOS scores depending on the video bitrate can be simplified with linear and logarithmic regressions, respectively. In Figure 1, the graph depicts a linear regression analysis conducted to examine the relationship between energy consumption (kWh) and bitrate (kbps). The y-axis represents energy consumption while the x-axis represents bitrate (kbps). The graph displays a straight-line trend that starts at 1.6 kWh and extends up to 3.5 kWh as the bitrate increases. The linear fitting function used for the analysis is formulated as: kWh = f(bitrate) = a * bitrate + c, where ‘a’ represents the slope and ‘c’ represents the y-intercept of the line.

Figure 1 visually illustrates how energy consumption tends to increase with higher bitrates, as indicated by the positive slope of the linear regression line in Figure 1. One notable observation is that as video bitrates increase, the electricity consumption of end-devices also tends to increase. This can be attributed to the larger amount of data traffic generated by higher-resolution video content, which requires higher bitrates for transmission. Consequently, smart TVs are likely to consume more energy compared to other devices. This finding is consistent with the results obtained from the linear regression model, as described in [4], further validating the relationship between bitrate and energy consumption.

As illustrated in Figure 2, the relationship between MOS and video bitrate (kbps) follows a logarithmic pattern. Therefore, we can use a straightforward QoE model to estimate the MOS if there is information about the video bitrate. This can be achieved by utilizing a logistic regression model MOS(x), where MOS = f(x) = a * log(x) + c, with x representing the video bitrate in Mbps, and a and c being coefficients, as provided in [9]. After, MOS and video bitrate (kbps) values in [4] are applied to the above-mentioned QoE green model equation regarding the logistic regression model, which is an extension of the logarithmic regression model [8]. This relationship allows to determine the green user QoE model and we exemplary show the green user QoE model for smart TV (using γ=2 in f_γ(x)).

According to Figure 2, it is categorized users into two groups: those who prioritize high-quality (HQ) video regardless of energy consumption, and green users who prioritize energy efficiency while still being satisfied with slightly lower video quality. It can be observed that the MOS value changes in video quality on their smart TVs faster compared to other end-devices.  This is evident from the steeper curve in the smart TV section. On the other hand, when looking at the curve for tablets, it shows that changes in bitrate have a milder impact on MOS values. The outcome suggests that video streaming on smaller screens, such as tablets or laptops, may contribute less to the perception of quality changes. Considering that those small-screen devices consume less energy than larger screen devices, it may be preferable to use lower resolution videos instead of high-resolution ones. Analysing the relationship between laptops and tablets, it can be seen that low-resolution video streaming on laptops resulted in lower MOS scores compared to the tablet. From this result, it can be inferred that the choice of end-device and user behaviour plays a significant role in energy savings. Figure 2 indicates that the MOS values for the green user of a smart TV is comparable to the MOS values of an HQ user using a laptop.

Concerning this outcome, in [10], the authors presented the results of a subjective assessment aimed at investigating how different factors, such as video resolution, luminance, and end devices (TV, Laptop, and Smartphone), impact the QoE and energy consumption of video streaming services. The study found that, in certain conditions such as dark or bright environments, low device backlight luminance, or small-screen devices), users may need to strike a balance between acceptable QoE and sustainable (green) choices, as consuming more energy (e.g., by streaming higher-quality videos) may not significantly enhance the QoE.

Therefore, Figure 3 plots the trade-off relationship between energy consumption (kWh) and MOS for the end devices (such as smart TV, laptop and tablet). Thereby, we differentiate the HQ user and the green user, which presents some interesting results. First, a MOS score of 4 leads to comparable energy consumption results for green and HQ users. The relative differences are rather small. However, aiming for best quality (MOS 5) leads to significant differences. Furthermore, it is seen that the device type has a significant impact on energy consumption. Even for green users, which rate lower bitrates with higher MOS scores than HQ users, the energy consumption of the smart TV is much higher than for any quality (i.e. bitrate) for laptop and tablet users. Thus, device type and user behaviour are essential to strike the right balance between QoE and energy consumption.

Discussions and Future Research

Meeting the QoE expectations of end-users is essential to fulfilling the requirements of video streaming services. As users are the primary viewers of streaming videos in most real-world scenarios, subjective QoE assessment [11] provides a direct and dependable means to evaluate the perceptual quality of video streaming. Furthermore, there is a growing need to create objective QoE assessment models provided in [12][13]. However, many studies have focused on investigating the QoE obtained through subjective and objective models and have overlooked the consideration of energy consumption in video streaming.

Therefore, in the previous section, we have discussed how the different elements within the video streaming ecosystem play a role in consuming energy and emitting CO2.  The findings pave the way for an objective response to determining an appropriate optimal video bitrate for viewing, considering both QoE and sustainability considerations, which can be further explored in future research.

It is evident that addressing energy consumption and emissions is crucial for the future of video streaming systems, while ensuring that end-users’ QoE is not compromised poses a significant and ongoing challenge. Thus, potential solutions to prevent energy consumption increase in QoE while still satisfying the user include streaming videos on smaller screen devices and watching lower resolution videos that offer sufficient quality instead of the highest resolution ones. Here, it can be highlighted the importance of user behavior to prevent energy consumption. Additionally, trade-off models can be developed using the green QoE model (especially for smarTV) by identifying ideal bitrate values for energy savings and user satisfaction in the QoE.

Delving deeper into the dynamics of the video streaming ecosystem, it becomes increasingly clear that energy consumption and emissions are critical concerns that must be addressed for the sustainable future of video streaming systems. The environmental impact of video streaming, particularly in terms of carbon emissions, cannot be understated. With the growing awareness of the urgent need to combat climate change, mitigating the environmental footprint of video streaming has become a pressing priority.

As video streaming technologies evolve, optimizing energy-efficient approaches without compromising users’ QoE is a complex task. End-users, who expect seamless and high-quality video streaming experiences, should not be deprived of their QoE while addressing the energy and emissions concerns. The outcome opens a novel door for an objective answer to the question of what constitutes an appropriate optimal video bitrate for viewing that takes into account both QoE and sustainability concerns.

Future research in this area is crucial to explore innovative techniques and strategies that can effectively reduce the energy consumption and carbon emissions of video streaming systems without sacrificing the QoE. Additionally, collaborative efforts among stakeholders, including researchers, industry practitioners, policymakers, and end-users, are essential in devising sustainable video streaming solutions that consider both environmental and user experience factors [14].

In conclusion, the discussions on the relationship between energy consumption, emissions, and QoE in video streaming systems emphasize the need for continued research and innovation to achieve a sustainable balance between environmental sustainability and user satisfaction.

References

  • [1] Sandvine. The Global Internet Phenomena Report. January 2023. Retrieved April 24, 2023
  • [2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld and P. Tran-Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” in IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469-492, Firstquarter 2015, doi: 10.1109/COMST.2014.2360940., 2015.
  • [3] Reinhard Madlener, Siamak Sheykhha, Wolfgang Briglauer,”The electricity- and CO2-saving potentials offered by regulation of European video-streaming services,” Energy Policy,vol. 161, p. 112716, 2022.
  • [4] G. Bingöl, S. Porcu, A. Floris and L. Atzori, “An Analysis of the Trade-off between Sustainability,” in IEEE ICC Workshop-GreenNet, Rome, 2023.
  • [5] T. Hoßfeld, M. Varela, L. Skorin-Kapov, P. E. Heegaard, “What is the trade-off between CO2 emission and video-conferencing QoE?,” ACM SIGMM Records, 2022.
  • [6] P. Suski, J. Pohl, and V. Frick, “All you can stream: Investigating the role of user behavior for greenhouse gas intensity of video streaming,” in Proc. of the 7th Int. Conf. on ICT for Sustainability, 2020, pp. 128–138.
  • [7] M. Mu, M. Broadbent, A. Farshad, N. Hart, D. Hutchison, Q. Ni, and N. Race, “A Scalable User Fairness Model for Adaptive Video Streaming Over SDN-Assisted Future Networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 8, p. 2168–2184, 2016.
  • [8] T. Hossfeld, M. Varela, L. Skorin-Kapov and P. E. Heegaard, “A Greener Experience: Trade-offs between QoE and CO2 Emissions in Today’s and 6G Networks,” IEEE Communications Magazine, pp. 1-7, 2023.
  • [9] J. P. López, D. Martín, D. Jiménez and J. M. Menéndez, “Prediction and Modeling for No-Reference Video Quality Assessment Based on Machine Learning,” in 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), IEEE, pp. 56-63, Las Palmas de Gran Canaria, Spain, 2018.
  • [10] G. Bingöl, A. Floris, S. Porcu, C. Timmerer and L. Atzori, “Are Quality and Sustainability Reconcilable? A Subjective Study on Video QoE, Luminance and Resolution,” in 15th International Conference on Quality of Multimedia Experience (QoMEX), Gent, Belgium, 2023.
  • [11] G. Bingol, L. Serreli, S. Porcu, A. Floris, L. Atzori, “The Impact of Network Impairments on the QoE of WebRTC applications: A Subjective study,” in 14th International Conference on Quality of Multimedia Experience (QoMEX), Lippstadt, Germany, 2022.
  • [12] D. Z. Rodríguez, R. L. Rosa, E. C. Alfaia, J. I. Abrahão and G. Bressan, “Video quality metric for streaming service using DASH standard,” IEEE Trans. Broadcasting, vol. vol. 62, no. 3, pp. 628-639, Sep. 2016.
  • [13] T. Hoßfeld, M. Seufert, C. Sieber and T. Zinner, “Assessing effect sizes of influence factors towards a QoE model for HTTP adaptive streaming,” in 6th Int. Workshop Qual. Multimedia Exper. (QoMEX), Sep. 2014.
  • [14] S. Afzal, R. Prodan, C. Timmerer, “Green Video Streaming: Challenges and Opportunities.” ACM SIGMultimedia Records, Jan. 2023.

Towards the design and evaluation of more sustainable multimedia experiences: which role can QoE research play?

In this column, we reflect on the environmental impact and broader sustainability implications of resource-demanding digital applications and services such as video streaming, VR/AR/XR and videoconferencing. We put emphasis not only on the experiences and use cases they enable but also on the “cost” of always striving for high Quality of Experience (QoE) and better user experiences. Starting by sketching the broader context, our aim is to raise awareness about the role that QoE research can play in the context of various of the United Nations’ Sustainable Development Goals (SDGs), either directly (e.g., SDG 13 “climate action”) or more indirectly (e.g., SDG 3 “good health and well-being” and SDG 12 “responsible consumption and production”).

UNs Sustainable Development goals (Figure taken from https://www.un.org/en/sustainable-development-goals)

The ambivalent role of digital technology

One of the latest reports from the Intergovernmental Panel on Climate Change (IPCC) confirmed the urgency of drastically reducing emissions of carbon dioxide and other human-induced greenhouse gas (GHG) emissions in the years to come (IPCC, 2021). This report, directly relevant in the context of SDG 13 “climate action”, confirmed the undeniable and negative human influence on global warming and the need for collective action. While the potential of digital technology (and ICT more broadly) for sustainable development has been on the agenda for some time, the context of the COVID-19 pandemic has made it possible to better understand a set of related opportunities and challenges.

First of all, it has been observed that long-lasting lockdowns and restrictions due to the COVID-19 pandemic and its aftermath have triggered a drastic increase in internet traffic (see e.g., Feldmann, 2020). This holds particularly for the use of videoconferencing and video streaming services for various purposes (e.g., work meetings, conferences, remote education, and social gatherings, just to name a few). At the same time, the associated drastic reduction of global air traffic and other types of traffic (e.g., road traffic) with their known environmental footprint, has had undeniable positive effects on the environment (e.g., reduced air pollution, better water quality see e.g., Khan et al., 2020). Despite this potential, the environmental gains enabled by digital technology and recent advances in energy efficiency are threatened by digital rebound effects due to increased energy consumption and energy demands related to ICT (Coroamua et al., 2019; Lange et al., 2020). In the context of ever-increasing consumption, there has for instance been a growing focus in the literature on the negative environmental impact of unsustainable use and viewing practices such as binge-watching, multi-watching and media-multitasking, which have become more common over the last years (see e.g., Widdicks, 2019). While it is important to recognize that the overall emission factor will vary depending on the mix of energy generation technologies used and region in the world (Preist et al., 2014), the above observation also fits with other recent reports and articles, which expect the energy demands linked to digital infrastructure, digital services and their use to further expand and which expect the greenhouse gas emissions of ICT relative to the overall worldwide footprint to significantly increase (see e.g., Belkhir et al., 2018, Morley et al., 2018, Obringer et al., 2021). Hence, these and other recent forecasts show a growing and even unsustainable high carbon footprint of ICT in the middle-term future, due to, among others, the increasing energy demand of data centres (including e.g., also the energy needed for cooling) and the associated traffic (Preist et al., 2016).

Another set of challenges that became more apparent can be linked to the human mental resources and health involved as well as environmental effects. Here, there is a link to the abovementioned Sustainable development goals 3 (good health and well-being) and 12 (sustainable consumption and production). For instance, the transition to “more sustainable” digital meetings, online conferences, and online education has also pointed to a range of challenges from a user point of view.  “Zoom fatigue” being a prominent example illustrates the need to strike the right balance between the more sustainable character of experiences provided by and enabled through technology and how these are actually experienced and perceived from a user point of view (Döring et al., 2022; Raake et al., 2022). Another example is binge-watching behavior, which can in certain cases have a positive effect on an individual’s well-being, but has also been shown to have a negative effect through e.g., feelings of guilt and goal conflicts  (Granow et al., 2018) or through problematic involvement resulting in e.g., chronic sleep issues  (Flayelle, 2020).

From the “production” perspective, recent work has looked at the growing environmental impact of commonly used cloud-based services such as video streaming (see e.g., Chen et al., 2020, Suski et al., 2020, The Shift Project, 2021) and the underlying infrastructure consisting of data centers, transport network and end devices (Preist et al., 2016, Suski, 2020, Preist et al., 2014). As a result, the combination of technological advancements and user-centered approaches aiming to always improve the experience may have undesired environmental consequences. This includes stimulating increased user expectations (e.g., higher video quality, increased connectivity and availability, almost zero-latency, …) and by triggering increased use, and unsustainable use practices, resulting in potential rebound effects due to increased data traffic and electricity demand. 

These observations have started to culminate into a plea for a shift towards a more sustainable and humanity-centered paradigm, which considers to a much larger extent how digital consumption and increased data demand impact individuals, society and our planet (Widdicks et al., 2019, Priest et al., 2016, Hazas & Nathan, 2018). Here, it is obvious that experience, consumption behavior and energy consumption are tightly intertwined.

How does QoE research fit into this picture?

This leads to the question of where research on Quality of Experience and its underlying goals fit into this broader picture, to which extent related topics have gained attention so far and how future research can potentially have an even larger impact.

As the COVID-19 related examples above already indicated, QoE research, through its focus on improving the experience for users in e.g., various videoconferencing-based scenarios or immersive technology-related use cases, already plays and will continue to play a key role in enabling more sustainable practices in various domains (e.g., remote education, online conferences, digital meetings, and thus reducing unnecessary travels, …) and linking up to various SDGs. A key challenge here is to enable experiences that become so natural and attractive that they may even become preferred in the future. While this is a huge and important topic, we refrain from discussing it further in this contribution, as it already is a key focus within the QoE community. Instead, in the following, we, first of all, reflect on the extent to which environmental implications of multimedia services have explicitly been on the agenda of the QoE community in the past, what the focus is in more recent work, and what is currently not yet sufficiently addressed. Secondly, we consider a broader set of areas and concrete topics in which QoE research can be related to environmental and broader sustainability-related concerns.

Traditionally, QoE research has predominantly focused on gathering insights that can guide the optimization of technical parameters and allocation of resources at different layers, while still ensuring a high QoE from a user point of view. A main underlying driver in this respect has traditionally been the related business perspective: optimizing QoE as a way to increase profitability and users/customers’ willingness to pay for better quality  (Wechsung, 2014). While better video compression techniques or adaptive video streaming may allow the saving of resources, which overall may lead to environmental gains, the latter has traditionally not been a main or explicit motivation.

There are however some exceptions in earlier work, where the focus was more explicitly on the link between energy consumption-related aspects, energy efficiency and QoE. The study of Ickin, 2012 for instance, aimed to investigate QoE influence factors of mobile applications and revealed the key role of the battery in successful QoE provisioning. In this work, it was observed that energy modelling and saving efforts are typically geared towards the immediate benefits of end users, while less attention was paid to the digital infrastructure (Popescu, 2018). Efforts were further also made in the past to describe, analyze and model the trade-off between QoE and energy consumption (QoE perceived per user per Joule, QoEJ) (Popescu, 2018) or power consumption (QoE perceived per user per Watt, QoEW) (Zhang et al., 2013), as well as to optimize resource consumption so as to avoid sources of annoyance (see e.g., (Fiedler et al., 2016). While these early efforts did not yet result in a generic end-to-end QoE-energy-model that can be used as a basis for optimizations, they provide a useful basis to build upon.

A more recent example (Hossfeld et al., 2022) in the context of video streaming services looked into possible trade-offs between varying levels of QoE and the resulting energy consumption, which is further mapped to CO₂ emissions (taking the EU emission parameter as input, as this – as mentioned – depends on the overall energy mix of green and non-renewable energy sources). Their visualization model further considers parameters such as the type of device and type of network and while it is a simplification of the multitude of possible scenarios and factors, it illustrates that it is possible to identify areas where energy consumption can be reduced while ensuring an acceptable QoE.

Another recent work (Herglotz et al., 2022) jointly analyzed end-user power efficiency and QoE related to video streaming, based on actual real-world data (i.e., YouTube streaming events). More specifically, power consumption was modelled and user-perceived QoE was estimated in order to model where optimization is possible. They found that optimization is possible and pointed to the importance of the choice of video codec, video resolution, frame rate and bitrate in this respect.

These examples point to the potential to optimize at the “production” side, however, the focus has more recently also been extended to the actual use, user expectations and “consumption” side (Jiang et al., 2021, Lange et al., 2020, Suski et al., 2020, Elgaaied-Gambier et al., 2020) Various topics are explored in this respect, e.g., digital carbon footprint calculation at the individual level (Schien et al., 2013, Preist et al., 2014), consumer awareness and pro-environmental digital habits (Elgaaied-Gambier et al., 2020; Gnanasekaran et al., 2021), or impact of user behavior (Suski et al., 2020). While we cannot discuss all of these in detail here, they all are based on the observation that there is a growing need to involve consumers and users in the collective challenge of reducing the impact of digital applications and services on the environment (Elgaaied-Gambier et al., 2020; Priest et al., 2016).

QoE research can play an important role here, extending the understanding of carbon footprint vs. QoE trade-offs to making users more aware of the actual “cost” of high QoE. A recent interview study with digital natives conducted by some of the co-authors of this column  (Gnanasekaran et al., 2021) illustrated that many users are not aware of the environmental impact of their user behavior and expectations and that even with such insights, substantial drastic changes in behavior cannot be expected. The lack of technological understanding, public information and social awareness about the topic were identified as important factors. It is therefore of utmost importance to trigger more awareness and help users see and understand their carbon footprint related to e.g., the use of video streaming services (Gnanasekaran et al., 2021). This perspective is currently missing in the field of QoE and we argue here that QoE research could – in collaboration with other disciplines and by integrating insights from other fields – play an important role here.

In terms of the motivation for adopting pro-environmental digital habits, Gnanasekaran et al., (2021) found that several factors indirectly contribute to this goal, including the striving for personal well-being. Finally, the results indicate some willingness to change and make compromises (e.g., accepting a lower video quality), albeit not an unconditional one: the alignment with other goals (e.g., personal well-being) and the nature of the perceived sacrifice and its impact play a key role. A key challenge for future work is therefore to identify and understand concrete mechanisms that could trigger more awareness amongst users about the environmental and well-being impact of their use of digital applications and services, and those that can further motivate positive behavioral change (e.g., opting for use practices that limit one’s digital carbon footprint, mindful digital consumption). By investigating the impact of various more environmentally-friendly viewing practices on QoE (e.g., actively promoting standard definition video quality instead of HD, nudging users to switch to audio-only when a service like YouTube is used as background noise or stimulating users to switch to the least data demanding viewing configuration depending on the context and purpose), QoE research could help to bridge the gap towards actual behavioral change.

Final reflections and challenges for future research

We have argued that research on users’ Quality of Experience and overall User Experience can be highly relevant to gain insights that may further drive the adoption of new, more sustainable usage patterns and that can trigger more awareness of implications of user expectations, preferences and actual use of digital services. However, the focus on continuously improving users’ Quality Experience may also trigger unwanted rebound effects, leading to an overall higher environmental footprint due to the increased use of digital applications and services. Further, it may have a negative impact on users’ long-term well-being as well.

We, therefore, need to join efforts with other communities to challenge the current design paradigm from a more critical stance, partly as “it’s difficult to see the ecological impact of IT when its benefits are so blindingly bright” (Borning et al., 2020). Richer and better experiences may lead to increased, unnecessary or even excessive consumption, further increasing individuals’ environmental impact and potentially impeding long-term well-being. Open questions are, therefore: Which fields and disciplines should join forces to mitigate the above risks? And how can QoE research — directly or indirectly — contribute to the triggering of sustainable consumption patterns and the fostering of well-being?

Further, a key question is how energy efficiency can be improved for digital services such as video streaming, videoconferencing, online gaming, etc., while still ensuring an acceptable QoE. This also points to the question of which compromises can be made in trading QoE against its environmental impact (from “willingness to pay” to “willingness to sacrifice”), under which circumstances and how these compromises can be meaningfully and realistically assessed. In this respect, future work should extend the current modelling efforts to link QoE and carbon footprint, go beyond exploring what users are willing to (more passively) endure, and also investigate how users can be more actively motivated to adjust and lower their expectations and even change their behavior.

These and related topics will be on the agenda of the Dagstuhl seminar  23042 “Quality of Sustainable Experience” and the conference QoMEX 2023 “Towards sustainable and inclusive multimedia experiences”.

Conference QoMEX 2023 “Towards sustainable and inclusive multimedia experiences

References

Belkhir, L., Elmeligi, A. (2018). “Assessing ICT global emissions footprint: Trends to 2040 & recommendations,” Journal of cleaner production, vol. 177, pp. 448–463.

Borning, A., Friedman, B., Logler, N. (2020). The ’invisible’ materiality of information technology. Communications of the ACM, 63(6), 57–64.

Chen, X., Tan, T., et al. (2020). Context-Aware and Energy-Aware Video Streaming on Smartphones. IEEE Transactions on Mobile Computing.

Coroama, V.C., Mattern, F. (2019). Digital rebound–why digitalization will not redeem us our environmental sins. In: Proceedings 6th international conference on ICT for sustainability. Lappeenranta. http://ceur-ws.org. vol. 238

Döring, N., De Moor, K., Fiedler, M., Schoenenberg, K., Raake, A. (2022). Videoconference Fatigue: A Conceptual Analysis. Int. J. Environ. Res. Public Health, 19(4), 2061 https://doi.org/10.3390/ijerph19042061

Elgaaied-Gambier, L., Bertrandias, L., Bernard, Y. (2020). Cutting the internet’s environmental footprint: An analysis of consumers’ self-attribution of responsibility. Journal of Interactive Marketing, 50, 120–135.

Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., … & Smaragdakis, G. (2020, October). The lockdown effect: Implications of the COVID-19 pandemic on internet traffic. In Proceedings of the ACM internet measurement conference (pp. 1-18).

Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis.

Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner, D., Wichtlhuber, M., Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., Smaragdakis, G. (2020, October). The lockdown effect: Implications of the COVID-19 pandemic on internet traffic. In Proceedings of the ACM internet measurement conference (pp. 1-18).

Fiedler, M., Popescu, A., Yao, Y. (2016), “QoE-aware sustainable throughput for energy-efficient video streaming,” in 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom). pp. 493–50

Flayelle, M., Maurage, P., Di Lorenzo, K.R., Vögele, C., Gainsbury, S.M., Billieux, J. (2020). Binge-Watching: What Do we Know So Far? A First Systematic Review of the Evidence. Curr Addict Rep 7, 44–60. https://doi.org/10.1007/s40429-020-00299-8

Gnanasekaran, V., Fridtun, H. T., Hatlen, H., Langøy, M. M., Syrstad, A., Subramanian, S., & De Moor, K. (2021). Digital carbon footprint awareness among digital natives: an exploratory study. In Norsk IKT-konferanse for forskning og utdanning (No. 1, pp. 99-112).

Granow, V.C., Reinecke, L., Ziegele, M. (2018): Binge-watching and psychological well-being: media use between lack of control and perceived autonomy. Communication Research Reports 35 (5), 392–401.

Hazas, M. and Nathan, L. (Eds.)(2018). Digital Technology and Sustainability. London: Routledge.

Herglotz, C., Springer, D., Reichenbach,  M., Stabernack B. and Kaup, A. (2018). “Modeling the Energy Consumption of the HEVC Decoding Process,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 1, pp. 217-229, Jan. 2018, doi: 10.1109/TCSVT.2016.2598705.

Hossfeld, T., Varela, M., Skorin-Kapov, L. Heegaard, P.E. (2022). What is the trade-off between CO2 emission and videoconferencing QoE. ACM SIGMM records, https://records.sigmm.org/2022/03/31/what-is-the-trade-off-between-co2-emission-and-video-conferencing-qoe/

Ickin, S., Wac, K., Fiedler, M. and Janowski, L. (2012). “Factors influencing quality of experience of commonly used mobile applications,” IEEE Communications Magazine, vol. 50, no. 4, pp. 48–56.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.

Jiang, P., Van Fan, Y., Klemes, J.J. (2021). Impacts of covid-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Applied energy, 285, 116441.

Khan, D., Shah, D. and Shah, S.S. (2020). “COVID-19 pandemic and its positive impacts on environment: an updated review,” International Journal of Environmental Science and Technology, pp. 1–10, 2020.

Lange, S., Pohl, J., Santarius, T. (2020). Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176, 106760.

Morley, J., Widdicks, K., Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research & Social Science, 38, 128–137.

Obringer, R., Rachunok, B., Maia-Silva, D., Arbabzadeh, M., Roshanak, N., Madani, K. (2021). The overlooked environmental footprint of increasing internet use. Resources, Conservation and Recycling, 167, 105389.

Popescu, A. (Ed.)(2018). Greening Video Distribution Networks, Springer.

Preist, C., Schien, D., Blevis, E. (2016). “Understanding and mitigating the effects of device and cloud service design decisions on the environmental footprint of digital infrastructure,” in Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1324–1337.

Preist, C., Schien, D., Shabajee, P. , Wood, S. and Hodgson, C. (2014). “Analyzing End-to-End Energy Consumption for Digital Services,” Computer, vol. 47, no. 5, pp. 92–95.

Raake, A., Fiedler, M., Schoenenberg, K., De Moor, K., Döring, N. (2022). Technological Factors Influencing Videoconferencing and Zoom Fatigue. arXiv:2202.01740, https://doi.org/10.48550/arXiv.2202.01740

Schien, D., Shabajee, P., Yearworth, M. and Preist, C. (2013), Modeling and Assessing Variability in Energy Consumption During the Use Stage of Online Multimedia Services. Journal of Industrial Ecology, 17: 800-813. https://doi.org/10.1111/jiec.12065

Suski, P., Pohl, J., Frick, V. (2020). All you can stream: Investigating the role of user behavior for greenhouse gas intensity of video streaming. In: Proceedings of the 7th International Conference on ICT for Sustainability. p. 128–138. ICT4S2020, Association for Computing Machinery, New York, NY, USA.

The Shift Project, Climate crisis: the unsustainable use of online video: Our new report on the environmental impact of ICT. https://theshiftproject.org/en/article/unsustainable-use-online-video/

Wechsung, I., De Moor, K. (2014). Quality of Experience Versus User Experience. In: Möller, S., Raake, A. (eds) Quality of Experience. T-Labs Series in Telecommunication Services. Springer, Cham. https://doi.org/10.1007/978-3-319-02681-7_3

Widdicks, K., Hazas, M., Bates, O., Friday, A. (2019). “Streaming, Multi-Screens and YouTube: The New (Unsustainable) Ways of Watching in the Home,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ser. CHI ’19. New York, NY, USA: Association for Computing Machinery, p. 1–13.

Zhang, X., Zhang, J., Huang, Y., Wang, W. (2013). “On the study of fundamental trade-offs between QoE and energy efficiency in wireless networks,” Transactions on Emerging Telecommunications Technologies, vol. 24, no. 3, pp. 259–265.

What is the trade-off between CO2 emission and video-conferencing QoE?

It is a natural thing that users of multimedia services want to have the highest possible Quality of Experience (QoE), when using said services. This is especially so in contexts such as video-conferencing and video streaming services, which are nowadays a large part of many users’ daily life, be it work-related Zoom calls, or relaxing while watching Netflix. This has implications in terms of the energy consumed for the provision of those services (think of the cloud services involved, the networks, and the users’ own devices), and therefore it also has an impact on the resulting CO₂ emissions. In this column, we look at the potential trade-offs involved between varying levels of QoE (which for video services is strongly correlated with the bit rates used), and the resulting CO₂ emissions. We also look at other factors that should be taken into account when making decisions based on these calculations, in order to provide a more holistic view of the environmental impact of these types of services, and whether they do have a significant impact.

Energy Consumption and CO2 Emissions for Internet Service Delivery

Understanding the footprint of Internet service delivery is a challenging task. On one hand, the infrastructure and software components involved in the service delivery need to be known. For a very fine-grained model, this requires knowledge of all components along the entire service delivery chain: end-user devices, fixed or mobile access network, core network, data center and Internet service infrastructure. Furthermore, the footprint may need to consider the CO₂ emissions for producing and manufacturing the hardware components as well as the CO₂ emissions during runtime. Life cycle assessment is then necessary to obtain CO₂ emission per year for hardware production. However, one may argue that the infrastructure is already there and therefore the focus will be on the energy consumption and CO₂ emission during runtime and delivery of the services. This is also the approach we follow here to provide quantitative numbers of energy consumption and CO₂ emission for Internet-based video services. On the other hand, quantitative numbers are needed beyond the complexity of understanding and modelling the contributors to energy consumption and C02 emission.

To overcome this complexity, the literature typically considers key figures on the overall data traffic and service consumption times aggregated over users and services over a longer period of time, e.g., one year. In addition, the total energy consumption of mobile operators and data centres is considered. Together with the information on e.g., the number of base station sites, this gives some estimates, e.g., on the average power consumption per site or the average data traffic per base station site [Feh11]. As a result, we obtain measures such as energy per bit (Joule/bit) determining the energy efficiency of a network segment. In [Yan19], the annual energy consumption of Akamai is converted to power consumption and then divided by the maximum network traffic, which results again in the energy consumption per bit of Akamai’s data centers. Knowing the share of energy sources (nonrenewable energy, including coal, natural gas, oil, diesel, petroleum; renewable energy including solar, geothermal, wind energy, biomass, hydropower from flowing water), allows relating the energy consumption to the total CO₂ emissions. For example, the total contribution from renewables exceeded 40% in 2021 in Germany and Finland, Norway has about 60%, Croatia about 36% (statistics from 2020).

A detailed model of the total energy consumption of mobile network services and applications is provided in [Yan19]. Their model structure considers important factors from each network segment from cloud to core network, mobile network, and end-user devices. Furthermore, service-specific energy consumption are provided. They found that there are strong differences between the service type and the emerging data traffic pattern. However, key factors are the amount of data traffic and the duration of the services. They also consider different end-to-end network topologies (user-to-data center, user-to-user via data center, user-to-user and P2P communication). Their model of the total energy consumption is expressed as the sum of the energy consumption of the different segments:

  • Smartphone: service-specific energy depends among others on the CPU usage and the network usage e.g. 4G over the duration of use,
  • Base station and access network: data traffic and signalling traffic over the duration of use,
  • Wireline core network: service specific energy consumption of a mobile service taking into account the data traffic volume and the energy per bit,
  • Data center: energy per bit of the data center is multiplied by data traffic volume of the mobile service.

The Shift Project [TSP19] provides a similar model which is called the “1 Byte Model”. The computation of energy consumption is transparently provided in calculation sheets and discussed by the scientific community. As a result of the discussions [Kam20a,Kam20b], an updated model was released [TSP20] clarifying a simple bit/byte conversion issue. The suggested models in [TSP20, Kam20b] finally lead to comparable numbers in terms of energy consumption and CO₂ emission. As a side remark: Transparency and reproducibility are key for developing such complex models!

The basic idea of the 1 Byte Model for computing energy consumption is to take into account the time t of Internet service usage and the overall data volume v. The time of use is directly related to the energy consumption of the display of an end-user device, but also for allocating network resources. The data volume to transmit through the network, but also to generate or process data for cloud services, drives the energy consumption additionally. The model does not differentiate between Internet services, but they will result in different traffic volumes over the time of use. Then, for each segment i (device, network, cloud) a linear model E_i(t,v)=a_i * t + b_i * v + c_i is provided to quantify the energy consumption. To be more precise, the different coefficients are provided for each segment by [TSP20]. The overall energy consumption is then E_total = E_device + E_network + E_cloud.

CO₂ emission is then again a linear model of the total energy consumption (over the time of use of a service), which depends on the share of nonrenewable and renewable energies. Again, The Shift Project derives such coefficients for different countries and we finally obtain CO2 = k_country * E_total.

The Trade-off between QoE and CO2 Emissions

As a use case, we consider hosting a scientific conference online through video-conferencing services. Assume there are 200 conference participants attending the video-conferencing session. The conference lasts for one week, with 6 hours of online program per day.  The video conference software requires the following data rates for streaming the sessions (video including audio and screen sharing):

  • high-quality video: 1.0 Mbps
  • 720p HD video: 1.5 Mbps
  • 1080p HD video: 3 Mbps

However, group video calls require even higher bandwidth consumption. To make such experiences more immersive, even higher bit rates may be necessary, for instance, if using VR systems for attendance.

A simple QoE model may map the video bit rate of the current video session to a mean opinion score (MOS). [Lop18] provides a logistic regression MOS(x) depending on the video bit rate x in Mbps: f(x) = m_1 log x + m_2

Then, we can connect the QoE model with the energy consumption and CO₂ emissions model from above in the following way. We assume a user attending the conference for time t. With a video bit rate x, the emerging data traffic is v = x*t. Those input parameters are now used in the 1 Byte Model for a particular device (laptop, smartphone), type of network (wired, wifi, mobile), and country (EU, US, China).

Figure 1 shows the trade-off between the MOS and energy consumption (left y-axis). The energy consumption is mapped to CO₂ emission by assuming the corresponding parameter for the EU, and that the conference participants are all connected with a laptop. It can be seen that there is a strong increase in energy consumption and CO₂ emission in order to reach the best possible QoE. The MOS score of 4.75 is reached if a video bit rate of roughly 11 Mbps is used. However, with 4.5 Mbps, a MOS score of 4 is already reached according to that logarithmic model. This logarithmic behaviour is a typical observation in QoE and is connected to the Weber-Fechner law, see [Rei10]. As a consequence, we may significantly save energy and CO₂ when not providing the maximum QoE, but “only” good quality (i.e., MOS score of 4). The meaning of the MOS ratings is 5=Excellent, 4=Good, 3=Fair, 2=Poor, 1=Bad quality.

Figure 1: Trade-off between MOS and energy consumption or CO2 emission.

Figure 2, therefore, visualized the gain when delivering the video in lower quality and lower video bit rates. In fact, the gain compared to the efforts for MOS 5 are visualized. To get a better understanding of the meaning of those CO₂ numbers, we express the CO₂ gain now in terms of thousands of kilometers driving by car. Since the CO₂ emission depends on the share of renewable energies, we may consider different countries and the parameters as provided in [TSP20]. We see that ensuring each conference participant a MOS score of 4 instead of MOS 5 results in savings corresponding to driving approximately 40000 kilometers by car assuming the renewable energy share in the EU – this is the distance around the Earth! Assuming the energy share in China, this would save more than 90000 kilometers. Of course, you could also save 90 000 kilometers by walking – which requires however about 2 years non-stop with a speed of 5 km/h. Note that this large amount of CO₂ emission is calculated assuming a data rate of 15 Mbps over 5 days (and 6 hours per day), resulting in about 40.5 TB of data that needs to be transferred to the 200 conference participants.

Figure 2: Relating the CO2 emission in different countries for achieving this MOS to the distance by travelling in a car (in thousands of kilometers).

Discussions

Raising awareness of CO₂ emissions due to Internet service consumption is crucial. The abstract CO₂ emission numbers may be difficult to understand, but relating this to more common quantities helps to understand the impact individuals have. Of course, the provided numbers only give an impression, since the models are very simple and do not take into account various facets. However, the numbers nicely demonstrate the potential trade-off between QoE of end-users and sustainability in terms of energy consumption and CO₂ emission. In fact, [Gna21] conducted qualitative interviews and found that there is a lack of awareness of the environmental impact of digital applications and services, even for digital natives. In particular, an underlying issue is that there is a lack of understanding among end-users as to how Internet service delivery works, which infrastructure components play a role and are included along the end-to-end service delivery path, etc. Hence, the environmental impact is unclear for many users. Our aim is thus to contribute to overcoming this issue by raising awareness on this matter, starting with simplified models and visualizations.

[Gna21] also found that users indicate a certain willingness to make compromises between their digital habits and the environmental footprint. Given global climate changes and increased environmental awareness among the general population, such a trend in willingness to make compromises may be expected to further increase in the near future. Hence, it may be interesting for service providers to empower users to decide their environmental footprint at the cost of lower (yet still satisfactory) quality. This will also reduce the costs for operators and seems to be a win-win situation if properly implemented in Internet services and user interfaces.

Nevertheless, tremendous efforts are also currently being undertaken by Internet companies to become CO₂ neutral in the future. For example, Netflix claims in [Netflix2021] that they plan to achieve net-zero greenhouse gas emissions by the close of 2022. Similarly, also economic, societal, and environmental sustainability is seen as a key driver for 6G research and development [Mat21]. However, the time horizon is on a longer scope, e.g., a German provider claims they will reach climate neutrality for in-house emissions by 2025 at the latest and net-zero from production to the customer by 2040 at the latest [DT21]. Hence, given the urgency of the matter, end-users and all stakeholders along the service delivery chain can significantly contribute to speeding up the process of ultimately achieving net-zero greenhouse gas emissions.

References

  • [TSP19] The Shift Project, “Lean ict: Towards digital sobriety,” directed by Hugues Ferreboeuf, Tech. Rep., 2019, last accessed: March 2022. Available online (last accessed: March 2022)
  • [Yan19] M. Yan, C. A. Chan, A. F. Gygax, J. Yan, L. Campbell,A. Nirmalathas, and C. Leckie, “Modeling the total energy consumption of mobile network services and applications,” Energies, vol. 12, no. 1, p. 184, 2019.
  • [TSP20] Maxime Efoui Hess and Jean-Noël Geist, “Did The Shift Project really overestimate the carbon footprint of online video? Our analysis of the IEA and Carbonbrief articles”, The Shift Project website, June 2020, available online (last accessed: March 2022) PDF
  • [Kam20a] George Kamiya, “Factcheck: What is the carbon footprint of streaming video on Netflix?”, CarbonBrief website, February 2020. Available online (last accessed: March 2022)
  • [Kam20b] George Kamiya, “The carbon footprint of streaming video: fact-checking the headlines”, IEA website, December 2020. Available online (last accessed: March 2022)
  • [Feh11] Fehske, A., Fettweis, G., Malmodin, J., & Biczok, G. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE communications magazine, 49(8), 55-62.
  • [Lop18]  J. P. López, D. Martín, D. Jiménez, and J. M. Menéndez, “Prediction and modeling for no-reference video quality assessment based on machine learning,” in 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), IEEE, 2018, pp. 56–63.
  • [Gna21] Gnanasekaran, V., Fridtun, H. T., Hatlen, H., Langøy, M. M., Syrstad, A., Subramanian, S., & De Moor, K. (2021, November). Digital carbon footprint awareness among digital natives: an exploratory study. In Norsk IKT-konferanse for forskning og utdanning (No. 1, pp. 99-112).
  • [Rei10] Reichl, P., Egger, S., Schatz, R., & D’Alconzo, A. (2010, May). The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE assessment. In 2010 IEEE International Conference on Communications (pp. 1-5). IEEE.
  • [Netflix21] Netflix: “Environmental Social Governance 2020”,  Sustainability Accounting Standards Board (SASB) Report, (2021, March). Available online (last accessed: March 2022)
  • [Mat21] Matinmikko-Blue, M., Yrjölä, S., Ahokangas, P., Ojutkangas, K., & Rossi, E. (2021). 6G and the UN SDGs: Where is the Connection?. Wireless Personal Communications, 121(2), 1339-1360.
  • [DT21] Hannah Schauff. Deutsche Telekom tightens its climate targets (2021, January). Available online (last accessed: March 2022)

ITU-T Standardization Activities Targeting Gaming Quality of Experience

Motivation for Research in the Gaming Domain

The gaming industry has eminently managed to intrinsically motivate users to interact with their services. According to the latest report of Newzoo, there will be an estimated total of 2.7 billion players across the globe by the end of 2020. The global games market will generate revenues of $159.3 billion in 2020 [1]. This surpasses the movie industry (box offices and streaming services) by a factor of four and almost three times the music industry market in value [2].

The rapidly growing domain of online gaming emerged in the late 1990s and early 2000s allowing social relatedness to a great number of players. During traditional online gaming, typically, the game logic and the game user interface are locally executed and rendered on the player’s hardware. The client device is connected via the internet to a game server to exchange information influencing the game state, which is then shared and synchronized with all other players connected to the server. However, in 2009 a new concept called cloud gaming emerged that is comparable to the rise of Netflix for video consumption and Spotify for music consumption. On the contrary to traditional online gaming, cloud gaming is characterized by the execution of the game logic, rendering of the virtual scene, and video encoding on a cloud server, while the player’s client is solely responsible for video decoding and capturing of client input [3].

For online gaming and cloud gaming services, in contrast to applications such as voice, video, and web browsing, little information existed on factors influencing the Quality of Experience (QoE) of online video games, on subjective methods for assessing gaming QoE, or on instrumental prediction models to plan and manage QoE during service set-up and operation. For this reason, Study Group (SG) 12 of the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) has decided to work on these three interlinked research tasks [4]. This was especially required since the evaluation of gaming applications is fundamentally different compared to task-oriented human-machine interactions. Traditional aspects such as effectiveness and efficiency as part of usability cannot be directly applied to gaming applications like a game without any challenges and time passing would result in boredom, and thus, a bad player experience (PX). The absence of standardized assessment methods as well as knowledge about the quantitative and qualitative impact of influence factors resulted in a situation where many researchers tended to use their own self-developed research methods. This makes collaborative work through reliably, valid, and comparable research very difficult. Therefore, it is the aim of this report to provide an overview of the achievements reached by ITU-T standardization activities targeting gaming QoE.

Theory of Gaming QoE

As a basis for the gaming research carried out, in 2013 a taxonomy of gaming QoE aspects was proposed by Möller et al. [5]. The taxonomy is divided into two layers of which the top layer contains various influencing factors grouped into user (also human), system (also content), and context factors. The bottom layer consists of game-related aspects including hedonic concepts such as appeal, pragmatic concepts such as learnability and intuitivity (part of playing quality which can be considered as a kind of game usability), and finally, the interaction quality. The latter is composed of output quality (e.g., audio and video quality), as well as input quality and interactive behaviour. Interaction quality can be understood as the playability of a game, i.e., the degree to which all functional and structural elements of a game (hardware and software) enable a positive PX. The second part of the bottom layer summarized concepts related to the PX such as immersion (see [6]), positive and negative affect, as well as the well-known concept of flow that describes an equilibrium between requirements (i.e., challenges) and abilities (i.e., competence). Consequently, based on the theory depicted in the taxonomy, the question arises which of these aspects are relevant (i.e., dominant), how they can be assessed, and to which extent they are impacted by the influencing factors.

Fig. 1: Taxonomy of gaming QoE aspects. Upper panel: Influence factors and interaction performance aspects; lower panel: quality features (cf. [5]).

Introduction to Standardization Activities

Building upon this theory, the SG 12 of the ITU-T has decided during the 2013-2016 Study Period to start work on three new work items called P.GAME, G.QoE-gaming, and G.OMG. However, there are also other related activities at the ITU-T summarized in Fig. 2 about evaluation methods (P.CrowdG), and gaming QoE modelling activities (G.OMMOG and P.BBQCG).

Fig. 2: Overview of ITU-T SG12 recommendations and on-going work items related to gaming services.

The efforts on the three initial work items continued during the 2017-2020 Study Period resulting in the recommendations G.1032, P.809, and G.1072, for which an overview will be given in this section.

ITU-T Rec. G.1032 (G.QoE-gaming)

The ITU-T Rec. G.1032 aims at identifying the factors which potentially influence gaming QoE. For this purpose, the Recommendation provides an overview table and then roughly classifies the influence factors into (A) human, (B) system, and (C) context influence factors. This classification is based on [7] but is now detailed with respect to cloud and online gaming services. Furthermore, the recommendation considers whether an influencing factor carries an influence mainly in a passive viewing-and-listening scenario, in an interactive online gaming scenario, or in an interactive cloud gaming scenario. This classification is helpful to evaluators to decide which type of impact may be evaluated with which type of text paradigm [4]. An overview of the influencing factors identified for the ITU-T Rec. G.1032 is presented in Fig. 3. For subjective user studies, in most cases the human and context factors should be controlled and their influence should be reduced as much as possible. For example, even though it might be a highly impactful aspect of today’s gaming domain, within the scope of the ITU-T cloud gaming modelling activities, only single-player user studies are conducted to reduce the impact of social aspects which are very difficult to control. On the other hand, as network operators and service providers are the intended stakeholders of gaming QoE models, the relevant system factors must be included in the development process of the models, in particular the game content as well as network and encoding parameters.

Fig. 3: Overview of influencing factors on gaming QoE summarized in ITU-T Rec. G.1032 (cf. [3]).

ITU-T Rec. P.809 (P.GAME)

The aim of the ITU-T Rec. P.809 is to describe subjective evaluation methods for gaming QoE. Since there is no single standardized evaluation method available that would cover all aspects of gaming QoE, the recommendation mainly summarizes the state of the art of subjective evaluation methods in order to help to choose suitable methods to conduct subjective experiments, depending on the purpose of the experiment. In its main body, the draft consists of five parts: (A) Definitions for games considered in the Recommendation, (B) definitions of QoE aspects relevant in gaming, (C) a description of test paradigms, (D) a description of the general experimental set-up, recommendations regarding passive viewing-and-listening tests and interactive tests, and (E) a description of questionnaires to be used for gaming QoE evaluation. It is amended by two paragraphs regarding performance and physiological response measurements and by (non-normative) appendices illustrating the questionnaires, as well as an extensive list of literature references [4].

Fundamentally, the ITU-T Rec. P.809 defines two test paradigms to assess gaming quality:

  • Passive tests with predefined audio-visual stimuli passively observed by a participant.
  • Interactive tests with game scenarios interactively played by a participant.

The passive paradigm can be used for gaming quality assessment when the impairment does not influence the interaction of players. This method suggests a short stimulus duration of 30s which allows investigating a great number of encoding conditions while reducing the influence of user behaviours on the stimulus due to the absence of their interaction. Even for passive tests, as the subjective ratings will be merged with those derived from interactive tests for QoE model developments, it is recommended to give instruction about the game rules and objectives to allow participants to have similar knowledge of the game. The instruction should also explain the difference between video quality and graphic quality (e.g., graphical details such as abstract and realistic graphics), as this is one of the common mistakes of participants in video quality assessment of gaming content.

The interactive test should be used when other quality features such as interaction quality, playing quality, immersion, and flow are under investigation. While for the interaction quality, a duration of 90s is proposed, a longer duration of 5-10min is suggested in the case of research targeting engagement concepts such as flow. Finally, the recommendation provides information about the selection of game scenarios as stimulus material for both test paradigms, e.g., ability to provide repetitive scenarios, balanced difficulty, representative scenes in terms of encoding complexity, and avoiding ethically questionable content.

ITU-T Rec. G.1072 (G.OMG)

The quality management of gaming services would require quantitative prediction models. Such models should be able to predict either “overall quality” (e.g., in terms of a Mean Opinion Score), or individual QoE aspects from characteristics of the system, potentially considering the player characteristics and the usage context. ITU-T Rec. G.1072 aims at the development of quality models for cloud gaming services based on the impact of impairments introduced by typical Internet Protocol (IP) networks on the quality experienced by players. G.1072 is a network planning tool that estimates the gaming QoE based on the assumption of network and encoding parameters as well as game content.

The impairment factors are derived from subjective ratings of the corresponding quality aspects, e.g., spatial video quality or interaction quality, and modelled by non-linear curve fitting. For the prediction of the overall score, linear regression is used. To create the impairment factors and regression, a data transformation from the MOS values of each test condition to the R-scale was performed, similar to the well-known E-model [8]. The R-scale, which results from an s-shaped conversion of the MOS scale, promises benefits regarding the additivity of the impairments and compensation for the fact that participants tend to avoid using the extremes of rating scales [3].

As the impact of the input parameters, e.g. delay, was shown to be highly content-dependent, the model used two modes. If no assumption on a game sensitivity class towards degradations is available to the user of the model (e.g. a network provider), the “default” mode of operation should be used that considers the highest (sensitivity) game class. The “default” mode of operation will result in a pessimistic quality prediction for games that are not of high complexity and sensitivity. If the user of the model can make an assumption about the game class (e.g. a service provider), the “extended” mode can predict the quality with a higher degree of accuracy based on the assigned game classes.

On-going Activities

While the three recommendations provide a basis for researchers, as well as network operators and cloud gaming service providers towards improving gaming QoE, the standardization activities continue by initiating new work items focusing on QoE assessment methods and gaming QoE model development for cloud gaming and online gaming applications. Thus, three work items have been established within the past two years.

ITU-T P.BBQCG

P.BBQCG is a work item that aims at the development of a bitstream model predicting cloud gaming QoE. Thus, the model will benefit from the bitstream information, from header and payload of packets, to reach a higher accuracy of audiovisual quality prediction, compared to G.1072. In addition, three different types of codecs and a wider range of network parameters will be considered to develop a generalizable model. The model will be trained and validated for H.264, H.265, and AV1 video codecs and video resolutions up to 4K. For the development of the model, two paradigms of passive and interactive will be followed. The passive paradigm will be considered to cover a high range of encoding parameters, while the interactive paradigm will cover the network parameters that might strongly influence the interaction of players with the game.

ITU-T P.CrowdG

A gaming QoE study is per se a challenging task on its own due to the multidimensionality of the QoE concept and a large number of influence factors. However, it becomes even more challenging if the test would follow a crowdsourcing approach which is of particular interest in times of the COVID-19 pandemic or if subjective ratings are required from a highly diverse audience, e.g., for the development or investigation of questionnaires. The aim of the P.CrowdG work item is to develop a framework that describes the best practices and guidelines that have to be considered for gaming QoE assessment using a crowdsourcing approach. In particular, the crowd gaming framework provides the means to ensure reliable and valid results despite the absence of an experimenter, controlled network, and visual observation of test participants had to be considered. In addition to the crowd game framework, guidelines will be given that provide recommendations to ensure collecting valid and reliable results, addressing issues such as how to make sure workers put enough focus on the gaming and rating tasks. While a possible framework for interactive tests of simple web-based games is already presented in [9], more work is required to complete the ITU-T work item for more advanced setups and passive tests.

ITU-T G.OMMOG

G.OMMOG is a work item that focuses on the development of an opinion model predicting gaming Quality of Experience (QoE) for mobile online gaming services. The work item is a possible extension of the ITU-T Rec. G.1072. In contrast to G.1072, the games are not executed on a cloud server but on a gaming server that exchanges game states with the user’s clients instead of a video stream. This more traditional gaming concept represents a very popular service, especially considering multiplayer gaming such as recently published AAA titles of the Multiplayer Online Battle Arena (MOBA) and battle royal genres.

So far, it is decided to follow a similar model structure to ITU-T Rec. G.1072. However, the component of spatial video quality, which was a major part of G.1072, will be removed, and the corresponding game type information will not be used. In addition, for the development of the model, it was decided to investigate the impact of variable delay and packet loss burst, especially as their interaction can have a high impact on the gaming QoE. It is assumed that more variability of these factors and their interplay will weaken the error handling of mobile online gaming services. Due to missing information on the server caused by packet loss or strong delays, the gameplay is assumed to be not smooth anymore (in the gaming domain, this is called ‘rubber banding’), which will lead to reduced temporal video quality.

About ITU-T SG12

ITU-T Study Group 12 is the expert group responsible for the development of international standards (ITU-T Recommendations) on performance, quality of service (QoS), and quality of experience (QoE). This work spans the full spectrum of terminals, networks, and services, ranging from speech over fixed circuit-switched networks to multimedia applications over mobile and packet-based networks.

In this article, the previous achievements of the ITU-T SG12 with respect to gaming QoE are described. The focus was in particular on subjective assessment methods, influencing factors, and modelling of gaming QoE. We hope that this information will significantly improve the work and research in this domain by enabling more reliable, comparable, and valid findings. Lastly, the report also points out many on-going activities in this rapidly changing domain, to which everyone is gladly invited to participate.

More information about the SG12, which will host its next E-meeting from 4-13 May 2021, can be found at ITU Study Group (SG) 12.

For more information about the gaming activities described in this report, please contact Sebastian Möller (sebastian.moeller@tu-berlin.de).

Acknowledgement

The authors would like to thank all colleagues of ITU-T Study Group 12, as well as of the Qualinet gaming Task Force, for their support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871793 and No 643072 as well as by the German Research Foundation (DFG) within project MO 1038/21-1.

References

[1] T. Wijman, The World’s 2.7 Billion Gamers Will Spend $159.3 Billion on Games in 2020; The Market Will Surpass $200 Billion by 2023, 2020.

[2] S. Stewart, Video Game Industry Silently Taking Over Entertainment World, 2019.

[3] S. Schmidt, Assessing the Quality of Experience of Cloud Gaming Services, Ph.D. dissertation, Technische Universität Berlin, 2021.

[4] S. Möller, S. Schmidt, and S. Zadtootaghaj, “New ITU-T Standards for Gaming QoE Evaluation and Management”, in 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2018.

[5] S. Möller, S. Schmidt, and J. Beyer, “Gaming Taxonomy: An Overview of Concepts and Evaluation Methods for Computer Gaming QoE”, in 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX), IEEE, 2013.

[6] A. Perkis and C. Timmerer, Eds., QUALINET White Paper on Definitions of Immersive Media Experience (IMEx), European Network on Quality of Experience in Multimedia Systems and Services, 14th QUALINET meeting, 2020.

[7] P. Le Callet, S. Möller, and A. Perkis, Eds, Qualinet White Paper on Definitions of Quality of Experience, COST Action IC 1003, 2013.

[8] ITU-T Recommendation G.107, The E-model: A Computational Model for Use in Transmission Planning. Geneva: International Telecommunication Union, 2015.

[9] S. Schmidt, B. Naderi, S. S. Sabet, S. Zadtootaghaj, and S. Möller, “Assessing Interactive Gaming Quality of Experience Using a Crowdsourcing Approach”, in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2020.

Towards Interactive QoE Assessment of Robotic Telepresence

Telepresence robots (TPRs) are remote-controlled, wheeled devices with an internet connection. A TPR can “teleport” you to a remote location, let you drive around and interact with people.  A TPR user can feel present in the remote location by being able to control the robot position, movements, actions, voice and video. A TPR facilitates human-to-human interaction, wherever you want and whenever you want. The human user sends commands to the TPR by pressing buttons or keys from a keyboard, mouse, or joystick.

A Robotic Telepresence Environment

In recent years, people from different environments and backgrounds have started to adopt TPRs for private and business purposes such as attending a class, roaming around the office and visiting patients. Due to the COVID-19 pandemic, adoption in healthcare has increased in order to facilitate social distancing and staff safety [Ackerman 2020, Tavakoli et al. 2020].

Robotic Telepresence Sample Use Cases

Despite such increase in adoption, a research gap remains from a QoE perspective, as TPRs offer interaction beyond the well understood QoE issues in traditional static audio-visual conferencing. TPRs, as remote-controlled vehicles, enable users with some form of physical presence at the remote location. Furthermore, for those people interacting with the TPR at the remote location, the robot is a physical representation or proxy agent of its remote operator. The operator can physically interact with the remote location by driving over an object or pushing an object forward. These aspects of teleoperation and navigation represent an additional dimension in terms of functionality, complexity and experience.

Navigating a TPR may pose challenges to end-users and influence their perceived quality of the system. For instance, when a TPR operator is driving the robot, he/she expects an instantaneous reaction from the robot. An increased delay in sending commands to the robot may thus negatively impact robot mobility and the user’s satisfaction, even if the audio-visual communication functionality itself is not affected.

In a recent paper published at QoMEX 2020 [Jahromi et al. 2020], we addressed this gap in research by means of a subjective QoE experiment that focused on the QoE aspects of live TPR teleoperation over the internet. We were interested in understanding how network QoS-related factors influence the operator’s QoE when using a TPR in an office context.

TPR QoE User Study and Experimental Findings

In our study, we investigated the QoE of TPR navigation along three research questions: 1) impact of network factors including bandwidth, delay and packet loss on the TPR navigation QoE, 2) discrimination between navigation QoE and video QoE, 3) impact of task on TPR QoE sensitivity.

The QoE study participants were situated in a laboratory setting in Dublin, Ireland, where they navigated a Beam Plus TPR via keyboard input on a desktop computer. The TPR was placed in a real office setting of California Telecom in California, USA. Bandwidth, delay and packet loss rate were manipulated on the operator’s PC.

A User Participating in the Robotic Telepresence QoE Study

A total of 23 subjects participated in our QoE lab study: 8 subjects were female and 15 male and the average test duration was 30 minutes per participant. We followed  ITU-T Recommendation BT.500 and detected three participants as outliers which were excluded from subsequent analysis. A post-test survey shows that none of the participants reported task boredom as a factor. In fact, many reported that they enjoyed the experience! 

The influence of network factors on Navigation QoE

All three network influence factors exhibited a significant impact on navigation QoE but in different ways. Above a threshold of 0.9 Mbps, bandwidth showed no influence on navigation QoE, while 1% packet loss already showed a noticeable impact on the navigation QoE.  A mixed-model ANOVA confirms that the impact of the different network factors on navigation quality ratings is statistically significant (see [Jahromi et al. 2020] for details).  From the figure below, one can see that the levels of navigation QoE MOS, as well as their sensitivity to network impairment level, depend on the actual impairment type.

The bar plots illustrate the influence of network QoS factors on the navigation quality (left) and the video quality (right).

Discrimination between navigation QoE and video QoE

Our study results show that the subjects were capable of discriminating between video quality and navigation quality, as they treated them as separate concepts when it comes to experience assessment. Based on ANOVA analysis [Jahromi et al. 2020], we see that the impact of bandwidth and packet loss on TPR video quality ratings were statistically significant. However, for the delay, this was not the case (in contrast to navigation quality).  A comparison of navigation quality and video quality subplots shows that changes in MOS across different impairment levels diverge between the two in terms of amplitude.  To quantify this divergence, we performed a Spearman Rank Ordered Correlation Coefficient (SROCC) analysis, revealing only a weak correlation between video and navigation quality (SROCC =0.47).

Impact of task on TPR QoE sensitivity

Our study showed that the type of TPR task had more impact on navigation QoE than streaming video QoE. Statistical analysis reveals that the actual task at hand significantly affects QoE impairment sensitivity, depending on the network impairment type. For example, the interaction between bandwidth and task is statistically significant for navigation QoE, which means that changes in bandwidth were rated differently depending on the task type. On the other hand, this was not the case for delay and packet loss. Regarding video quality, we do not see a significant impact of task on QoE sensitivity to network impairments, except for the borderline case for packet loss rate.

Conclusion: Towards a TPR QoE Research Agenda

There were three key findings from this study. First, we understand that users can differentiate between visual and navigation aspects of TPR operation. Secondly, all three network factors have a significant impact on TPR navigation QoE. Thirdly,  visual and navigation QoE sensitivity to specific impairments strongly depends on the actual task at hand. We also found the initial training phase to be essential in order to ensure familiarity of participants with the system and to avoid bias caused by novelty effects. We observed that participants were highly engaged when navigating the TPR, as was also reflected in the positive feedback received during the debriefing interviews. We believe that our study methodology and design, including task types, worked very well and can serve as a solid basis for future TPR QoE studies. 

We also see the necessity of developing a more generic, empirically validated, TPR experience framework that allows for systematic assessment and modelling of QoE and UX in the context of TPR usage. Beyond integrating concepts and constructs that have been already developed in other related domains such as (multi-party) telepresence, XR, gaming, embodiment and human-robot interaction, the development of such a framework must take into account the unique properties that distinguish the TPR experience from other technologies:

  • Asymmetric conditions
    The factors influencing  QoE for TPR users are not only bidirectional, they are also different on both sides of TPR, i.e., the experience is asymmetric. Considering the differences between the local and the remote location, a TPR setup features a noticeable number of asymmetric conditions as regards the number of users, content, context, and even stimuli: while the robot is typically controlled by a single operator, the remote location may host a number of users (asymmetry in the number of users). An asymmetry also exists in the number of stimuli. For instance, the remote users perceive the physical movement and presence of the operator by the actual movement of the TPR. The experience of encountering a TPR rolling into an office is a hybrid kind of intrusion, somewhere between a robot and a physical person. However, from the operator’s perspective, the experience is a rather virtual one, as he/she only becomes conscious of physical impact at the remote location only by means of technically mediated feedback.
  • Social Dimensions
    According to [Haans et al. 2012], the experience of telepresence is defined as “a consequence of the way in which we are embodied, and that the capability to feel as if one is actually there in a technologically mediated or simulated environment is a natural consequence of the same ability that allows us to adjust to, for example, a slippery surface or the weight of a hammer”.
    The experience of being present in a TPR-mediated context goes beyond AR and VR. It is a blended physical reality. The sense of ownership of a wheeled TPR by means of mobility and remote navigation of using a “physical” object, allows the users to feel as if they are physically present in the remote environment (e.g. a physical avatar). This allows the TPR users to get involved in social activities, such as accompanying people and participating in discussions while navigating, sharing the same visual scenes, visiting a place and getting involved in social discussions, parties and celebrations. In healthcare, a doctor can use TPR for visiting patients as well as dispensing and administering medication remotely.
  • TPR Mobility and Physical Environment
    Mobility is a key dimension of telepresence frameworks [Rae et al. 2015]. TPR mobility and navigation features introduce new interactions between the operators and the physical environment.  The environmental aspect becomes an integral part of the interaction experience [Hammer et al. 2018].
    During a TPR usage, the navigation path and the number of obstacles that a remote user may face can influence the user’s experience. The ease or complexity of navigation can change the operator’s focus and attention from one influence factor to another (e.g., video quality to navigation quality). In Paloski et al’s, 2008 study, it was found that cognitive impairment as a result of fatigue can influence user performance concerning robot operation [Paloski et al. 2008]. This raises the question of how driving and interaction through TPR impacts the user’s cognitive load and results in fatigue compared to physical presence.
    The mobility aspects of TPRs can also influence the perception of spatial configurations of the physical environment. This allows the TPR user to manipulate and interact with the environment from a spatial configuration aspect [Narbutt et al. 2017]. For example,  the ambient noise of the environment can be perceived at different levels. The TPR operator can move the robot closer to the source of the noise or keep a distance from it. This can enhance his/her feelings of being present [Rae et al. 2015].

Above distinctive characteristics of a TPR-mediated context illustrate the complexity and the broad range of aspects that potentially have a significant influence on the TPR quality of user experience. Consideration of these features and factors provides a useful basis for the development of a comprehensive TPR experience framework.

References

  • [Tavakoli et al. 2020] Tavakoli, Mahdi, Carriere, Jay and Torabi, Ali. (2020). Robotics For COVID-19: How Can Robots Help Health Care in the Fight Against Coronavirus.
  • [Ackerman 2020] E. Ackerman (2020). Telepresence Robots Are Helping Take Pressure Off Hospital Staff, IEEE Spectrum, Apr 2020
  • [Jahromi et al. 2020] H. Z. Jahromi, I. Bartolec, E. Gamboa, A. Hines, and R. Schatz, “You Drive Me Crazy! Interactive QoE Assessment for Telepresence Robot Control,” in 12th International Conference on Quality of Multimedia Experience (QoMEX 2020), Athlone, Ireland, 2020.
  • [Hammer et al. 2018] F. Hammer, S. Egger-Lampl, and S. Möller, “Quality-of-user-experience: a position paper,” Quality and User Experience, vol. 3, no. 1, Dec. 2018, doi: 10.1007/s41233-018-0022-0.
  • [Haans et al. 2012] A. Haans & W. A. Ijsselsteijn (2012). Embodiment and telepresence: Toward a comprehensive theoretical framework✩. Interacting with Computers, 24(4), 211-218.
  • [Rae et al. 2015] I. Rae, G. Venolia, JC. Tang, D. Molnar  (2015, February). A framework for understanding and designing telepresence. In Proceedings of the 18th ACM conference on computer supported cooperative work & social computing (pp. 1552-1566).
  • [Narbutt et al. 2017] M. Narbutt, S. O’Leary, A. Allen, J. Skoglund, & A. Hines,  (2017, October). Streaming VR for immersion: Quality aspects of compressed spatial audio. In 2017 23rd International Conference on Virtual System & Multimedia (VSMM) (pp. 1-6). IEEE.
  • [Paloski et al. 2008] W. H. Paloski, C. M. Oman, J. J. Bloomberg, M. F. Reschke, S. J. Wood, D. L. Harm, … & L. S. Stone (2008). Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. Journal of Gravitational Physiology, 15(2), 1-29.

Definitions of Crowdsourced Network and QoE Measurements

1 Introduction and Definitions

Crowdsourcing is a well-established concept in the scientific community, used for instance by Jeff Howe and Mark Robinson in 2005 to describe how businesses were using the Internet to outsource work to the crowd [2], but can be dated back up to 1849 (weather prediction in the US). Crowdsourcing has enabled a huge number of new engineering rules and commercial applications. To better define crowdsourcing in the context of network measurements, a seminar was held in Würzburg, Germany 25-26 September 2019 on the topic “Crowdsourced Network and QoE Measurements”. It notably showed the need for releasing a white paper, with the goal of providing a scientific discussion of the terms “crowdsourced network measurements” and “crowdsourced QoE measurements”. It describes relevant use cases for such crowdsourced data and its underlying challenges.

The outcome of the seminar is the white paper [1], which is – to our knowledge – the first document covering the topic of crowdsourced network and QoE measurements. This document serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal of providing a commonly accepted definition in the community. The scope is focused on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE, or address regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted.

This article now summarizes the current state of the art in crowdsourcing research and lays down the foundation for the definition of crowdsourcing in the context of network and QoE measurements as provided in [1]. One important effort is first to properly define the various elements of crowdsourcing.

1.1 Crowdsourcing

The word crowdsourcing itself is a mix of the crowd and the traditional outsourcing work-commissioning model. Since the publication of [2], the research community has been struggling to find a definition of the term crowdsourcing [3,4,5] that fits the wide variety of its applications and new developments. For example, in ITU-T P.912, crowdsourcing has been defined as:

Crowdsourcing consists of obtaining the needed service by a large group of people, most probably an on-line community.

The above definition has been written with the main purpose of collecting subjective feedback from users. For the purpose of this white paper focused on network measurements, it is required to clarify this definition. In the following, the term crowdsourcing will be defined as follows:

Crowdsourcing is an action by an initiator who outsources tasks to a crowd of participants to achieve a certain goal.

The following terms are further defined to clarify the above definition:

A crowdsourcing action is part of a campaign that includes processes such as campaign design and methodology definition, data capturing and storage, and data analysis.

The initiator of a crowdsourcing action can be a company, an agency (e.g., a regulator), a research institute or an individual.

Crowdsourcing participants (also “workers” or “users”) work on the tasks set up by the initiator. They are third parties with respect to the initiator, and they must be human.

The goal of a crowdsourcing action is its main purpose from the initiator’s perspective.

The goals of a crowdsourcing action can be manifold and may include, for example:

  • Gathering subjective feedback from users about an application (e.g., ranks expressing the experience of users when using an application)
  • Leveraging existing capacities (e.g., storage, computing, etc.)  offered by companies or individual users to perform some tasks
  • Leveraging cognitive efforts of humans for problem-solving in a scientific context.

In general, an initiator adopts a crowdsourcing approach to remedy a lack of resources (e.g., running a large-scale computation by using the resources of a large number of users to overcome its own limitations) or to broaden a test basis much further than classical opinion polls. Crowdsourcing thus covers a wide range of actions with various degrees of involvement by the participants.

In crowdsourcing, there are various methods of identifying, selecting, receiving, and retributing users contributing to a crowdsourcing initiative and related services. Individuals or organizations obtain goods and/or services in many different ways from a large, relatively open and often rapidly-evolving group of crowdsourcing participants (also called users). The use of goods or information obtained by crowdsourcing to achieve a cumulative result can also depend on the type of task, the collected goods or information and final goal of the crowdsourcing task.

1.2 Roles and Actors

Given the above definitions, the actors involved in a crowdsourcing action are the initiator and the participants. The role of the initiator is to design and initiate the crowdsourcing action, distribute the required resources to the participants (e.g., a piece of software or the task instructions, assign tasks to the participants or start an open call to a larger group), and finally to collect, process and evaluate the results of the crowdsourcing action.

The role of participants depends on their degree of contribution or involvement. In general, their role is described as follows. At least, they offer their resources to the initiator, e.g., time, ideas, or computation resources. In higher levels of contributions, participants might run or perform the tasks assigned by the initiator, and (optionally) report the results to the initiator.

Finally, the relationships between the initiator and the participants are governed by policies specifying the contextual aspects of the crowdsourcing action such as security and confidentiality, and any interest or business aspects specifying how the participants are remunerated, rewarded or incentivized for their participation in the crowdsourcing action.

2 Crowdsourcing in the Context of Network Measurements

The above model considers crowdsourcing at large. In this section, we analyse crowdsourcing for network measurements, which creates crowd data. This exemplifies the broader definitions introduced above, even if the scope is more restricted but with strong contextual aspects like security and confidentiality rules.

2.1 Definition: Crowdsourced Network Measurements

Crowdsourcing enables a distributed and scalable approach to perform network measurements. It can reach a large number of end-users all over the world. This clearly surpasses the traditional measurement campaigns launched by network operators or regulatory agencies able to reach only a limited sample of users. Primarily, crowd data may be used for the purpose of evaluating QoS, that is, network performance measurements. Crowdsourcing may however also be relevant for evaluating QoE, as it may involve asking users for their experience – depending on the type of campaign.

With regard to the previous section and the special aspects of network measurements, crowdsourced network measurements/crowd data are defined as follows, based on the previous, general definition of crowdsourcing introduced above:

Crowdsourced network measurements are actions by an initiator who outsources tasks to a crowd of participants to achieve the goal of gathering network measurement-related data.

Crowd data is the data that is generated in the context of crowdsourced network measurement actions.

The format of the crowd data is specified by the initiator and depends on the type of crowdsourcing action. For instance, crowd data can be the results of large scale computation experiments, analytics, measurement data, etc. In addition, the semantic interpretation of crowd data is under the responsibility of the initiator. The participants cannot interpret the crowd data, which must be thoroughly processed by the initiator to reach the objective of the crowdsourcing action.

We consider in this paper the contribution of human participants only. Distributed measurement actions solely made by robots, IoT devices or automated probes are excluded. Additionally, we require that participants consent to contribute to the crowdsourcing action. This consent might, however, vary from actively fulfilling dedicated task instructions provided by the initiator to merely accepting terms of services that include the option of analysing usage artefacts generated while interacting with a service.

It follows that in the present document, it is assumed that measurements via crowdsourcing (namely, crowd data) are performed by human participants aware of the fact that they are participating in a crowdsourcing campaign. Once clearly stated, more details need to be provided about the slightly adapted roles of the actors and their relationships in a crowdsourcing initiative in the context of network measurements.

2.2 Active and Passive Measurements

For a better classification of crowdsourced network measurements, it is important to differentiate between active and passive measurements. Similar to the current working definition within the ITU-T Study Group 12 work item “E.CrowdESFB” (Crowdsourcing Approach for the assessment of end-to-end QoS in Fixed Broadband and Mobile Networks), the following definitions are made:

Active measurements create artificial traffic to generate crowd data.

Passive measurements do not create artificial traffic, but measure crowd data that is generated by the participant.

For example, a typical case of an active measurement is a speed test that generates artificial traffic against a test server in order to estimate bandwidth or QoS. A passive measurement instead may be realized by fetching cellular information from a mobile device, which has been collected without additional data generation.

2.3 Roles of the Actors

Participants have to commit to participation in the crowdsourcing measurements. The level of contribution can vary depending on the corresponding effort or level of engagement. The simplest action is to subscribe to or install a specific application, which collects data through measurements as part of its functioning – often in the background and not as part of the core functionality provided to the user. A more complex task-driven engagement requires a more important cognitive effort, such as providing subjective feedback on the performance or quality of certain Internet services. Hence, one must differentiate between participant-initiated measurements and automated measurements:

Participant-initiated measurements require the participant to initiate the measurement. The measurement data are typically provided to the participant.

Automated measurements can be performed without the need for the participant to initiate them. They are typically performed in the background.

A participant can thus be a user or a worker. The distinction depends on the main focus of the person doing the contribution and his/her engagement:

A crowdsourcing user is providing crowd data as the side effect of another activity, in the context of passive, automated measurements.

A crowdsourcing worker is providing crowd data as a consequence of his/her engagement when performing specific tasks, in the context of active, participant-initiated measurements.

The term “users” should, therefore, be used when the crowdsourced activity is not the main focus of engagement, but comes as a side effect of another activity – for example, when using a web browsing application which collects measurements in the background, which is a passive, automated measurement.

“Workers” are involved when the crowdsourced activity is the main driver of engagement, for example, when the worker is paid to perform specific tasks and is performing an active, participant-initiated measurement. Note that in some cases, workers can also be incentivized to provide passive measurement data (e.g. with applications collecting data in the background if not actively used).

In general, workers are paid on the basis of clear guidelines for their specific crowdsourcing activity, whereas users provide their contribution on the basis of a more ambiguous, indirect engagement, such as via the utilization of a particular service provided by the beneficiary of the crowdsourcing results, or a third-party crowd provider. Regardless of the participants’ level of engagement, the data resulting from the crowdsourcing measurement action is reported back to the initiator.

The initiator of the crowdsourcing measurement action often has to design a crowdsourcing measurement campaign, recruit the participants (selectively or openly), provide them with the necessary means (e.g. infrastructure and/or software) to run their action, provide the required (backend) infrastructure and software tools to the participants to run the action, collect, process and analyse the information, and possibly publish the results.

2.4 Dimensions of Crowdsourced Network Measurements

In light of the previous section, there are multiple dimensions to consider for crowdsourcing in the context of network measurements. A preliminary list of dimensions includes:

  • Level of subjectivity (subjective vs. objective measurements) in the crowd data
  • Level of engagement of the participant (participant-initiated or background) or their cognitive effort, and awareness (consciousness) of the measurement level of traffic generation (active vs. passive)
  • Type and level of incentives (attractiveness/appeal, paid or unpaid)

Besides these key dimensions, there are other features which are relevant in characterizing a crowdsourced network measurement activity. These include scale, cost, and value; the type of data collected; the goal or the intention, i.e. the intention of the user (based on incentives) versus the intention of the crowdsourcing initiator of the resulting output.

Figure 1: Dimensions for network measurements crowdsourcing definition, and relevant characterization features (examples with two types of measurement actions)

In Figure 1, we have illustrated some dimensions of network measurements based on crowdsourcing. Only the subjectivity, engagement and incentives dimension are displayed, on an arbitrary scale. The objective of this figure is to show that an initiator has a wide range of combinations for crowdsourcing action. The success of a measurement action with regard to an objective (number of participants, relevance of the results, etc.) is multifactorial. As an example, action 1 may indicate QoE measurements from a limited number of participants and action 2 visualizes the dimensions for network measurements by involving a large number of participants.

3 Summary

The attendees of the Würzburg seminar on “Crowdsourced Network and QoE Measurements” have produced a white paper, which defines terms in the context of crowdsourcing for network and QoE measurements, lists of relevant use cases from the perspective of different stakeholders, and discusses the challenges associated with designing crowdsourcing campaigns, analyzing, and interpreting the data. The goal of the white paper is to provide definitions to be commonly accepted by the community and to summarize the most important use-cases and challenges from industrial and academic perspectives.

References

[1] White Paper on Crowdsourced Network and QoE Measurements – Definitions, Use Cases and Challenges (2020). Tobias Hoßfeld and Stefan Wunderer, eds., Würzburg, Germany, March 2020. doi: 10.25972/OPUS-20232.

[2] Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6), 1-4.

[3] Estellés-Arolas, E., & González-Ladrón-De-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information science, 38(2), 189-200.

[4] Kietzmann, J. H. (2017). Crowdsourcing: A revised definition and introduction to new research. Business Horizons, 60(2), 151-153.

[5] ITU-T P.912, “Subjective video quality assessment methods for recognition tasks “, 08/2016

[6] ITU-T P.808 (ex P.CROWD), “Subjective evaluation of speech quality with a crowdsourcing approach”, 06/2018

Collaborative QoE Management using SDN

The Software-Defined Networking (SDN) paradigm offers the flexibility and programmability in the deployment and management of network services by separating the Control plane from the Data plane. Being based on network abstractions and virtualization techniques, SDN allows for simplifying the implementation of traffic engineering techniques as well as the communication among different services providers, included Internet Service Providers (ISPs) and Over The Top (OTT) providers. For these reasons, the SDN architectures have been widely used in the last years for the QoE-aware management of multimedia services.

The paper [1] presents Timber, an open source SDN-based emulation platform to provide the research community with a tool for experimenting new QoE management approaches and algorithms, which may also rely on information exchange between ISP and OTT [2].  We believe that the exchange of information between the OTT and the ISP is extremely important because:

  1. QoE models depend on different influence factors, i.e., network, application, system and context factors [3];
  2. OTT and ISP have different information in their hands, i.e., network state and application Key Quality Indicators (KQIs), respectively;
  3. End-to-end encryption of the OTT services makes it difficult for ISP to have access to application KQIs to perform QoE-aware network management.

In the following we briefly describe Timber and the impact of collaborative QoE management.

Timber architecture

Figure 1 represents the reference architecture, which is composed of four planes. The Service Management Plane is a cloud space owned by the OTT provider, which includes: a QoE Monitoring module to estimate the user’s QoE on the basis of service parameters acquired at the client side; a DB where QoE measurements are stored and can be shared with third parties; a Content Distribution service to deliver multimedia contents. Through the RESTful APIs, the OTTs give access to part of the information stored in the DB to the ISP, on the basis of appropriate agreements.

The Network Data Plane, Network Control Plane, and the Network Management Plane are the those in the hands of the ISP. The Network Data Plane includes all the SDN enabled data forwarding network devices; the Network Control Plane consists of the SDN controller which manages the network devices through Southbound APIs; and the Network Management Plane is the application layer of the SDN architecture controlled by the ISP to perform network-wide control operations which communicates with the OTT via RESTful APIs. The SDN application includes a QoS Monitoring module to monitor the performance of the network, a Management Policy module to take into account Service Level Agreements (SLA), and a Control Actions module that decides on the network control actions to be implemented by the SDN controller to optimize the network resources and improve the service’s quality.

Timber implements this architecture on top of the Mininet SDN emulator and the Ryu SDN controller, which provides the major functionalities of the traffic engineering abstractions. According to the depicted scenario, the OTT has the potential to monitor the level of QoE for the provided services as it has access to the needed application and network level KQIs (Key Quality Indicators). On the other hand, the ISP has the potential to control the network level quality by changing the allocated resources. This scenario is implemented in Timber and allows for setting the needed emulation network and application configuration to text QoE-aware service management algorithms.

Specifically, the OTT performs QoE monitoring of the delivered service by acquiring service information from the client side based on passive measurements of service-related KQIs obtained through probes installed in the user’s devices. Based on these measurements, specific QoE models can be used to predict the user experience. The QoE measurements of active clients’ sessions are also stored in the OTT DB, which can also be accessed by the ISP through mentioned RESTful APIs. The ISP’s SDN application periodically controls the OTT-reported QoE and, in case of observed QoE degradations, implements network-wide policies by communicating with the SDN controller through the Northbound APIs. Accordingly, the SDN controller performs network management operations such as link-aggregation, addition of new flows, network slicing, by controlling the network devices through Southbound APIs.

QoE management based on information exchange: video service use-case

The previously described scenario, which is implemented by Timber, portraits a collaborative scenario between the ISP and the OTT, where the first provides QoE-related data and the later takes care of controlling the resources allocated to the deployed services. Ahmad et al. [4] makes use of Timber to conduct experiments aimed at investigating the impact of the frequency of information exchange between an OTT providing a video streaming service and the ISP on the end-user QoE.

Figure 2 shows the experiments topology. Mininet in Timber is used to create the network topology, which in this case regards the streaming of video sequences from the media server to the User1 (U1) when web traffic is also transmitted on the same network towards User2 (U2). U1 and U2 are two virtual hosts sharing the same access network and act as the clients. U1 runs the client-side video player and the Apache server provides both web and HAS (HTTP Adaptive Streaming) video services.

In the considered collaboration scenario, QoE-related KQIs are extracted from the client-side and sent to the to the MongoDB database (managed by the OTT), as depicted by the red dashed arrows. This information is then retrieved by the SDN controller of the ISP at frequency f (see green dashed arrow). The aim is to provide different network level resources to video streaming and normal web traffic when QoE degradation is observed for the video service. These control actions on the network are needed because TCP-based web traffic sessions of 4 Mbps start randomly towards U2 during the HD video streaming sessions, causing network time varying bottlenecks in the S1−S2 link. In these cases, the SDN controller implements virtual network slicing at S1 and S2 OVS switches, which provides the minimum guaranteed throughput of 2.5 Mbps and 1 Mbps to video streaming and web traffic, respectively. The SDN controller application utilizes flow matching criteria to assign flows to the virtual slice. The objective of this emulations is to show the impact of f on the resulting QoE.

The Big Buck Bunny 60-second long video sequence in 1280 × 720 was streamed between the server and the U1 by considering 5 different sampling intervals T for information exchange between OTT and ISP, i.e., 2s, 4s, 8s, 16s, and 32s. The information exchanged in this case were the average length stalling duration and the number of stalling events measured by the probe at the client video player. Accordingly, the QoE for the video streaming service was measured in terms of predicted MOS using the QoE model defined in [5] for HTTP video streaming, as follows:
MOSp = α exp( -β(L)N ) + γ
where L and N are the average length stalling duration and the number of stalling events, respectively, whereas α=3.5, γ=1.5, and β(L)=0.15L+0.19.

Figure 3.a shows the average predicted MOS when information is exchanged at different sampling intervals (the inverse of f). The greatest MOSp is 4.34 obtained for T=2s, and T=4s. Exponential decay in MOSp is observed as the frequency of information exchange decreases. The lowest MOSp is 3.07 obtained for T=32s. This result shows that greater frequency of information exchange leads to low latency in the controller response to QoE degradation. The reason is that the buffer at the client player side keeps on starving for longer durations in case of higher T resulting into longer stalling durations until the SDN controller gets triggered to provide the guaranteed network resources to support the video streaming service.

Figure 3.b Initial loading time, average stalling duration and latency in controller response to quality degradation for different sampling intervals.

Figure 3.b shows the video initial loading time, average stalling duration and latency in controller response to quality degradation w.r.t different sampling intervals. The latency in controller response to QoE degradation increases linearly as the frequency of information exchange decreases while the stalling duration grows exponentially as the frequency decrease. The initial loading time seems to be not relevantly affected by different sampling intervals.

Conclusions

Experiments are conducted on an SDN emulation environment to investigate the impact of the frequency of information exchange between OTT and ISP when a collaborative network management approach is considered. The QoE for a video streaming service is measured by considering 5 different sampling intervals for information exchange between OTT and ISP, i.e., 2s, 4s, 8s, 16s, and 32s. The information exchanged are the video average length stalling duration and the number of stalling events.

The experiment results showed that higher frequency of information exchange results in greater delivered QoE, but a sampling interval lower than 4s (frequency > ¼ Hz) may not further improve the delivered QoE. Clearly, this threshold depends on the variability of the network conditions. Further studies are needed to understand how frequently the ISP and OTT should collaboratively share data to have observable benefits in terms of QoE varying the network status and the deployed services.

References

[1] A. Ahmad, A. Floris and L. Atzori, “Timber: An SDN based emulation platform for QoE Management Experimental Research,” 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, 2018, pp. 1-6.

[2] https://github.com/arslan-ahmad/Timber-DASH

[3] P. Le Callet, S. Möller, A. Perkis et al., “Qualinet White Paper on Definitions of Quality of Experience (2012),” in European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003), Lausanne, Switzerland, Version 1.2, March 2013.

[4] A. Ahmad, A. Floris and L. Atzori, “Towards Information-centric Collaborative QoE Management using SDN,” 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-6.

[5] T. Hoßfeld, C. Moldovan, and C. Schwartz, “To each according to his needs: Dimensioning video buffer for specific user profiles and behavior,” in IFIP/IEEE Int. Symposium on Integrated Network Management (IM), 2015. IEEE, 2015, pp. 1249–1254.