VQEG Column: VQEG Meeting Dec. 2020 (virtual/online)

Introduction

Welcome to the third column on the ACM SIGMM Records from the Video Quality Experts Group (VQEG).
The last VQEG plenary meeting took place online from 14 to 18 December. Given the current circumstances, it was organized all online for the second time, with multiple sessions distributed over five to six hours each day allowing remote participation of people from different time zones. About 130 participants from 24 different countries registered to the meeting and could attend the several presentations and discussions that took place in all working groups.
This column provides an overview of this meeting, while all the information, minutes, files (including the presented slides), and video recordings from the meeting are available online in the VQEG meeting website. As highlights of interest for the SIGMM community, apart from several interesting presentations of state-of-the-art works, relevant contributions to ITU recommendations related to multimedia quality assessment were reported from various groups (e.g., on adaptive bitrate streaming services, on subjective quality assessment of 360-degree videos, on statistical analysis of quality assessments, on gaming applications, etc.), the new group on quality assessment for health applications was launched, and an interesting session on 5G use cases took place, as well as a workshop dedicated to user testing during Covid-19. In addition, new efforts have been launched related to the research on quality metrics for live media streaming applications, and to provide guidelines on implementing objective video quality metrics (ahead of PSNR) to the video compression community.
We encourage those readers interested in any of the activities going on in the working groups to check their websites and subscribe to the corresponding reflectors, to follow them and get involved.

Overview of VQEG Projects

Audiovisual HD (AVHD)

AVHD/P.NATS2 project was a joint collaboration between VQEG and ITU SG12, whose goal was to develop a multitude of objective models, varying in terms of complexity/type of input/use-cases for the assessment of video quality in adaptive bitrate streaming services over reliable transport up to 4K. The report of this project, which finished in January 2020, was approved in this meeting. In summary, it resulted in 10 model categories with models trained and validated on 26 subjective datasets. This activity resulted in 4 ITU standards (ITU-T Rec. P.1204 in [1], P.1204.3 in [2], P.1204.4 in [3], P.1204.5 in [4], a dataset created during this effort and a journal publication reporting details on the validation tests [5]. In this sense, one presentation by Alexander Raake (TU Ilmenau) provided details on the P.NATS Phase 2 project and the resulting ITU recommendations, while details of the processing chain used in the project were presented by Werner Robitza (AVEQ GmbH) and David Lindero (Ericsson).
In addition to this activity, there were various presentations covering topics related to this group. For instance, Cindy Chen, Deepa Palamadai Sundar, and Visala Vaduganathan (Facebook) presented their work on hardware acceleration of video quality metrics. Also from Facebook, Haixiong Wang presented their work on efficient measurement of quality at scale in their video ecosystem [6]. Lucjan Janowski (AGH University) proposed a discussion on more ecologically valid subjective experiments, Alan Bovik (University of Texas at Austin) presented a hitchhiker’s guide to SSIM, and Ali Ak (Université de Nantes) presented a comprehensive analysis of crowdsourcing for subjective evaluation of tone mapping operators. Finally, Rohit Puri (Twitch) opened a discussion on the research on QoE metrics for live media streaming applications, which led to the agreement to start a new sub-project within AVHD group on this topic.

Psycho-Physiological Quality Assessment (PsyPhyQA)

The chairs of the PsyPhyQA group provided an update on the activities carried out. In this sense, a test plan for psychophysiological video quality assessment was established and currently the group is aiming to develop ideas to do quality assessment tests with psychophysiological measures in times of a pandemic and to collect and discuss ideas about possible joint works. In addition, the project is trying to learn about physiological correlates of simulator sickness, and in this sense, a presentation was delivered J.P. Tauscher (Technische Universität Braunschweig) on exploring neural and peripheral physiological correlates of simulator sickness. Finally, Waqas Ellahi (Université de Nantes) gave a presentation on visual fidelity of tone mapping operators from gaze data using HMM [7].

Quality Assessment for Health applications (QAH)

This was the first meeting for this new QAH group. The chairs informed about the first audio call that took place on November to launch the project, know how many people are interested in this project, what each member has already done on medical images, what each member wants to do in this joint project, etc.
The plenary meeting served to collect ideas about possible joint works and to share experiences on related studies. In this sense, Lucie Lévêque (Université Gustave Eiffel) presented a review on subjective assessment of the perceived quality of medical images and videos, Maria Martini (Kingston University London) talked about the suitability of VMAF for quality assessment of medical videos (ultrasound & wireless capsule endoscopy), and Jorge Caviedes (ASU) delivered a presentation on cognition inspired diagnostic image quality models.

Statistical Analysis Methods (SAM)

The update report from SAM group presented the ongoing progress on new methods for data analysis, including the discussion with ITU-T (P.913 [8]) and ITU-R (BT.500 [9]) about including a new one in the recommendations.
Several interesting presentations related to the ongoing work within SAM were delivered. For instance, Jakub Nawala (AGH University) presented the “su-JSON”, a uniform JSON-based subjective data format, as well as his work on describing subjective experiment consistency by p-value p–p plots. An interesting discussion was raised by Lucjan Janowski (AGH University) on how to define the quality of a single sequence, analyzing different perspectives (e.g., crowd, experts, psychology, etc.). Also, Babak Naderi (TU Berlin) presented an analysis on the relation on Mean Opinion Score (MOS) and ranked-based statistics. Recent advances on Netflix quality metric VMAF were presented by Zhi Li (Netflix), especially on the properties of VMAF in the presence of image enhancement. Finally, two more presentations addressed the progress on statistical analyses of quality assessment data, one by Margaret Pinson (NTIA/ITS) on the computation of confidence intervals, and one by Suiyi Ling (Université de Nantes) on a probabilistic model to recover the ground truth and annotator’s behavior.

Computer Generated Imagery (CGI)

The report from the chairs of the CGI group covered the progress on the research on assessment methodologies for quality assessment of gaming services (e.g., ITU-T P.809 [10]), on crowdsourcing quality assessment for gaming application (P.808 [11]), on quality prediction and opinion models for cloud gaming (e.g., ITU-T G.1072 [12]), and on models (signal-, bitstream-, and parametric-based models) for video quality assessment of CGI content (e.g., nofu, NDNetGaming, GamingPara, DEMI, NR-GVQM, etc.).
In terms of planned activities, the group is targeting the generation of new gaming datasets and tools for metrics to assess gaming QoE, but also the group is aiming at identifying other topics of interest in CGI rather than gaming content.
In addition, there was a presentation on updates on gaming standardization activities and deep learning models for gaming quality prediction by Saman Zadtootaghaj (TU Berlin), another one on subjective assessment of multi-dimensional aesthetic assessment for mobile game images by Suiyi Ling (Université de Nantes), and one addressing quality assessment of gaming videos compressed via AV1 by Maria Martini (Kingston University London), leading to interesting discussions on those topics.

No Reference Metrics (NORM)

The session for NORM group included a presentation on the differences among existing implementations of spatial and temporal perceptual information indices (SI and TI as defined in ITU-T P.910 [13]) by Cosmin Stejerean (Facebook), which led to an open discussion and to the agreement on launching an effort to clarify the ambiguous details that have led to different implementations (and different results), to generate test vectors for reference and validation of the implementations and to address the computation of these indicators for HDR content. In addition, Margaret Pinson (NTIA/ITS) presented the paradigm of no-reference metric research analyzing design problems and presenting a framework for collaborative development of no-reference metrics for image and video quality. Finally, Ioannis Katsavounidis (Facebook) delivered a talk on addressing the addition of video quality metadata in compressed bitstreams. Further discussions on these topics are planned in the next month within the group.

Joint Effort Group (JEG) – Hybrid

The JEG-Hybrid group is currently working in collaboration with Sky Group in determining when video quality metrics are likely to inaccurately predict the MOS and on modelling single observers’ quality perception based in artificial intelligence techniques. In this sense, Lohic Fotio (Politecnico di Tornio) presented his work on artificial intelligence-based observers for media quality assessment. Also, together with Florence Agboma (Sky UK) they presented their work on comparing commercial and open source video quality metrics for HD constant bitrate videos. Finally, Dariusz Grabowski (AGH University) presented his work on comparing full-reference video quality metrics using cluster analysis.

Quality Assessment for Computer Vision Applications (QACoViA)

The QACoViA group announced Lu Zhang (INSA Rennes) as new third co-chair, who will also work in the near future in a project related to image compression for optimized recognition by distributed neural networks. In addition, Mikołaj Leszczuk (AGH University) presented a report on a recently finished project related to objective video quality assessment method for recognition tasks, in collaboration with Huawei through its Innovation Research Programme.

5G Key Performance Indicators (5GKPI)

The 5GKPI session was oriented to identify possible interested partners and joint works (e.g., contribution to ITU-T SG12 recommendation G.QoE-5G [14], generation of open/reference datasets, etc.). In this sense, it included four presentations of use cases of interest: tele-operated driving by Yungpeng Zang (5G Automotive Association), content production related to the European project 5G-Records by Paola Sunna (EBU), Augmented/Virtual Reality by Bill Krogfoss (Bell Labs Consulting), and QoE for remote controlled use cases by Kjell Brunnström (RISE).

Immersive Media Group (IMG)

A report on the updates within the IMG group was initially presented, especially covering the current joint work investigating the subjective quality assessment of 360-degree video. In particular, a cross-lab test, involving 10 different labs, were carried out at the beginning of 2020 resulting in relevant outcomes including various contributions to ITU SG12/Q13 and MPEG AhG on Quality of Immersive Media. It is worth noting that the new ITU-T recommendation P.919 [15], related to subjective quality assessment of 360-degree videos (in line with ITU-R BT.500 [8] or ITU-T P.910 [13]), was approved in mid-October, and was supported by the results of these cross-lab tests. 
Furthermore, since these tests have already finished, there was a presentation by Pablo Pérez (Nokia Bell-Labs) on possible future joint activities within IMG, which led to an open discussion after it that will continue in future audio calls.
In addition, a total of four talks covered topics related to immersive media technologies, including an update from the Audiovisual Technology Group of the TU Ilmenau on immersive media topics, and a presentation of a no-reference quality metric for light field content based on a structural representation of the epipolar plane image by Ali Ak and Patrick Le Callet (Université de Nantes) [16]. Also, there were two presentations related to 3D graphical contents, one addressing the perceptual characterization of 3D graphical contents based on visual attention patterns by Mona Abid (Université de Nantes), and another one comparing subjective methods for quality assessment of 3D graphics in virtual reality by Yana Nehmé (INSA Lyon). 

Intersector Rapporteur Group on Audiovisual Quality Assessment (IRG-AVQA) and Q19 Interim Meeting

Chulhee Lee (Yonsei University) chaired the IRG-AVQA session, providing an overview on the progress and recent works within ITU-R WP6C in HDR related topics and ITU-T SG12 Questions 9, 13, 14, 19 (e.g., P.NATS Phase 2 and follow-ups, subjective assessment of 360-degree video, QoE factors for AR applications, etc.). In addition, a new work item was announced within ITU-T SG9: End-to-end network characteristics requirements for video services (J.pcnp-char [17]).
From the discussions raised during this session, a new dedicated group was set up to work on introducing and provide guidelines on implementing objective video quality metrics, ahead of PSNR, to the video compression community. The group was named “Implementers Guide for Video Quality Metrics (IGVQM)” and will be chaired by Ioannis Katsavounidis (Facebook), accounting with the involvement of several people from VQEG.
After the IRG-AVQA session, the Q19 interim meeting took place with a report by Chulhee Lee and a presentation by Zhi Li (Netflix) on an update on improvements on subjective experiment data analysis process.

Other updates

Apart from the aforementioned groups, the Human Factors for Visual Experience (HVEI) is still active coordinating VQEG activities in liaison with the IEEE Standards Association Working Groups on HFVE, especially on perceptual quality assessment of 3D, UHD and HD contents, quality of experience assessment for VR and MR, quality assessment of light-field imaging contents, and deep-learning-based assessment of visual experience based on human factors. In this sense, there are ongoing contributions from VQEG members to IEEE Standards.
In addition, there was a workshop dedicated to user testing during Covid-19, which included a presentation on precaution for lab experiments by Kjell Brunnström (RISE), another presentation by Babak Naderi (TU Berlin) on subjective tests during the pandemic, and a break-out session for discussions on the topic.

Finally, the next VQEG plenary meeting will take place in spring 2021 (exact dates still to be agreed), probably online again.

References

[1] ITU-T Rec. P.1204. Video quality assessment of streaming services over reliable transport for resolutions up to 4K, 2020.
[2] ITU-T Rec. P.1204.3. Video quality assessment of streaming services over reliable transport for resolutions up to 4K with access to full bitstream information, 2020.
[3] ITU-T Rec. P.1204.4. Video quality assessment of streaming services over reliable transport for resolutions up to 4K with access to full and reduced reference pixel information, 2020.
[4] ITU-T Rec. P.1204.5. Video quality assessment of streaming services over reliable transport for resolutions up to 4K with access to transport and received pixel information, 2020.
[5] A. Raake, S. Borer, S. Satti, J. Gustafsson, R.R.R. Rao, S. Medagli, P. List, S. Göring, D. Lindero, W. Robitza, G. Heikkilä, S. Broom, C. Schmidmer, B. Feiten, U. Wüstenhagen, T. Wittmann, M. Obermann, R. Bitto, “Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204”, IEEE Access, vol. 8, pp. 193020-193049, Oct. 2020.
[6] S.L. Regunathan, H. Wang, Y. Zhang, Y. R. Liu, D. Wolstencroft, S. Reddy, C. Stejerean, S. Gandhi, M. Chen, P. Sethi, A, Puntambekar, M. Coward, I. Katsavounidis, “Efficient measurement of quality at scale in Facebook video ecosystem”, in Applications of Digital Image Processing XLIII, vol. 11510, p. 115100J, Aug. 2020.
[7] W. Ellahi, T. Vigier and P. Le Callet, “HMM-Based Framework to Measure the Visual Fidelity of Tone Mapping Operators”, IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, United Kingdom, Jul. 2020.
[8] ITU-R Rec. BT.500-14. Methodology for the subjective assessment of the quality of television pictures, 2019.
[9] ITU-T Rec. P.913. Methods for the subjective assessment of video quality, audio quality and audiovisual quality of Internet video and distribution, 2016.
[10] ITU-T Rec. P.809. Subjective evaluation methods for gaming quality, 2018.
[11] ITU-T Rec. P.808. Subjective evaluation of speech quality with a crowdsourcing approach, 2018.
[12] ITU-T Rec. G.1072. Opinion model predicting gaming quality of experience for cloud gaming services, 2020.
[13] ITU-T Rec. P.910. Subjective video quality assessment methods for multimedia applications, 2008.
[14] ITU-T Rec. G.QoE-5G. QoE factors for new services in 5G networks, 2020 (under study).
[15] ITU-T Rec. P.919. Subjective test methodologies for 360º video on head-mounted displays, 2020.
[16] A. Ak, S. Ling and P. Le Callet, “No-Reference Quality Evaluation of Light Field Content Based on Structural Representation of The Epipolar Plane Image”, IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, United Kingdom, Jul. 2020.
[17] ITU-T Rec. J.pcnp-char. E2E Network Characteristics Requirement for Video Services, 2020 (under study).

JPEG Column: 89th JPEG Meeting

JPEG initiates standardisation of image compression based on AI

The 89th JPEG meeting was held online from 5 to 9 October 2020.

During this meeting multiple JPEG standardisation activities and explorations were discussed and progressed. Notably, the call for evidence on learning-based image coding was successfully completed and evidence was found that this technology promises several new functionalities while offering at the same time superior compression efficiency, beyond the state of the art. A new work item, JPEG AI, that will use learning-based image coding as core technology has been proposed, enlarging the already wide families of JPEG standards.

Figure 1. JPEG Families of standards and JPEG AI.

The 89th JPEG meeting had the following highlights:

  • JPEG AI call for evidence report
  • JPEG explores standardization needs to address fake media
  • JPEG Pleno Point Cloud Coding reviews status of the call for evidence
  • JPEG Pleno Holography call for proposals timeline
  • JPEG DNA identifies use cases and requirements
  • JPEG XL standard defines the final specification
  • JPEG Systems JLINK reaches committee draft stage
  • JPEG XS 2nd Edition Parts 1, 2 and 3.

JPEG AI

At the 89th meeting the submissions to the Call for Evidence on learning-based image coding were presented and discussed. Four submissions were received in response to the Call for Evidence. The results of the subjective evaluation of the submissions to the Call for Evidence were reported and discussed in detail by experts. It was agreed that there is strong evidence that learning-based image coding solutions can outperform the already defined anchors in terms of compression efficiency, when compared to state-of-the-art conventional image coding architecture. Thus, it was decided to create a new standardisation activity for a JPEG AI on learning-based image coding system, that applies machine learning tools to achieve substantially better compression efficiency compared to current image coding systems, while offering unique features desirable for an efficient distribution and consumption of images. This type of approach should allow to obtain an efficient compressed domain representation not only for visualisation, but also for machine learning based image processing and computer vision. JPEG AI releases to the public the results of the objective and subjective evaluations as well as a first version of common test conditions for assessing the performance of leaning-based image coding systems.

JPEG explores standardization needs to address fake media

Recent advances in media modification, particularly deep learning-based approaches, can produce near realistic media content that is almost indistinguishable from authentic content. These developments open opportunities for production of new types of media contents that are useful for many creative industries but also increase risks of spread of maliciously modified content (e.g., ‘deepfake’) leading to social unrest, spreading of rumours or encouragement of hate crimes. The JPEG Committee is interested in exploring if a JPEG standard can facilitate a secure and reliable annotation of media modifications, both in good faith and malicious usage scenarios. 

The JPEG is currently discussing with stakeholders from academia, industry and other organisations to explore the use cases that will define a roadmap to identify the requirements leading to a potential standard. The Committee has received significant interest and has released a public document outlining the context, use cases and requirements. JPEG invites experts and technology users to actively participate in this activity and attend a workshop, to be held online in December 2020. Details on the activities of JPEG in this area can be found on the JPEG.org website. Interested parties are notably encouraged to register to the mailing list of the ad hoc group that has been set up to facilitate the discussions and coordination on this topic.

JPEG Pleno Point Cloud Coding

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 89th JPEG meeting, the JPEG Committee reviewed expressions of interest in the Final Call for Evidence on JPEG Pleno Point Cloud Coding. This Call for Evidence focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. Between its 89th and 90th meetings, the JPEG Committee will be actively promoting this activity and collecting submissions to participate in the Call for Evidence.

JPEG Pleno Holography

At the 89th meeting, the JPEG Committee released an updated draft of the Call for Proposals for JPEG Pleno Holography. A final Call for Proposals on JPEG Pleno Holography will be released in April 2021. JPEG Pleno Holography is seeking for compression solutions of holographic content. The scope of the activity is quite large and addresses diverse use cases such as holographic microscopy and tomography, but also holographic displays and printing. Current activities are centred around refining the objective and subjective quality assessment procedures. Interested parties are already invited at this stage to participate in these activities.

JPEG DNA

JPEG standards are used in storage and archival of digital pictures. This puts the JPEG Committee in a good position to address the challenges of DNA-based storage by proposing an efficient image coding format to create artificial DNA molecules. JPEG DNA has been established as an exploration activity within the JPEG Committee to study use cases, to identify requirements and to assess the state of the art in DNA storage for the purpose of image archival using DNA in order to launch a standardization activity. To this end, a first workshop was organised on 30 September 2020. Presentations made at the workshop are available from the following URL:

http://ds.jpeg.org/proceedings/JPEG_DNA_1st_Workshop_Proceedings.zip.

At its 89th meeting, the JPEG Committee released a second version of a public document that describes its findings regarding storage of digital images using artificial DNA. In this framework, JPEG DNA ad hoc group was re-conducted in order to continue its activities to further refine the above-mentioned document and to organise a second workshop. Interested parties are invited to join this activity by participating in the AHG through the following URL: http://listregistration.jpeg.org.

JPEG XL

Final technical comments by national bodies have been addressed and incorporated into the JPEG XL specification (ISO/IEC 18181-1) and the reference implementation. A draft FDIS study text has been prepared and final validation experiments are planned.

JPEG Systems

The JLINK (ISO/IEC 19566-7) standard has reached committee draft stage and will be made public.  The JPEG Committee invites technical feedback on the document which is available on the JPEG website.  Development of the JPEG Snack (IS0/IEC 19566-8) standard has begun to support the defined use cases and requirements.  Interested parties can subscribe to the mailing list of the JPEG Systems AHG in order to contribute to the above activities.

JPEG XS

The JPEG committee is finalizing its work on the 2nd Editions of JPEG-XS Part 1, Part 2 and Part 3. Part 1 defines new coding tools required to efficiently compress raw Bayer images. The observed quality gains of raw Bayer compression over compressing in the RGB domain can be as high as 5dB PSNR. Moreover, the second edition adds support for mathematically lossless image compression and allows compression of 4:2:0 sub-sampled images. Part 2 defines new profiles for such content. With the support for low-complexity high quality compression of raw Bayer (or Color-Filtered Array) data, JPEG XS proves to also be an excellent compression scheme in the professional and consumer digital camera market, as well as in the machine vision and automotive industry.

Final Quote

“JPEG AI will be a new work item completing the collection of JPEG standards. JPEG AI relies on artificial intelligence to compress images. This standard not only will offer superior compression efficiency beyond the current state of the art but also will open new possibilities for vision tasks by machines and computational imaging for humans.” Said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No 90, will be held online from January 18 to 22, 2021.
  • N0 91, will be held online from April 19 to 23, 2021.

MPEG Column: 132nd MPEG Meeting (virtual/online)

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects.

The 132nd MPEG meeting was the first meeting with the new structure. That is, ISO/IEC JTC 1/SC 29/WG 11 — the official name of MPEG under the ISO structure — was disbanded after the 131st MPEG meeting and some of the subgroups of WG 11 (MPEG) have been elevated to independent MPEG Working Groups (WGs) and Advisory Groups (AGs) of SC 29 rather than subgroups of the former WG 11. Thus, the MPEG community is now an affiliated group of WGs and AGs that will continue meeting together according to previous MPEG meeting practices and will further advance the standardization activities of the MPEG work program.

The 132nd MPEG meeting was the first meeting with the new structure as follows (incl. Convenors and position within WG 11 structure):

  • AG 2 MPEG Technical Coordination (Convenor: Prof. Jörn Ostermann; for overall MPEG work coordination and prev. known as the MPEG chairs meeting; it’s expected that one can also provide inputs to this AG without being a member of this AG)
  • WG 2 MPEG Technical Requirements (Convenor Dr. Igor Curcio; former Requirements subgroup)
  • WG 3 MPEG Systems (Convenor: Dr. Youngkwon Lim; former Systems subgroup)
  • WG 4 MPEG Video Coding (Convenor: Prof. Lu Yu; former Video subgroup)
  • WG 5 MPEG Joint Video Coding Team(s) with ITU-T SG 16 (Convenor: Prof. Jens-Rainer Ohm; former JVET)
  • WG 6 MPEG Audio Coding (Convenor: Dr. Schuyler Quackenbush; former Audio subgroup)
  • WG 7 MPEG Coding of 3D Graphics (Convenor: Prof. Marius Preda, former 3DG subgroup)
  • WG 8 MPEG Genome Coding (Convenor: Prof. Marco Mattaveli; newly established WG)
  • AG 3 MPEG Liaison and Communication (Convenor: Prof. Kyuheon Kim; (former Communications subgroup)
  • AG 5 MPEG Visual Quality Assessment (Convenor: Prof. Mathias Wien; former Test subgroup).

The 132nd MPEG meeting was held as an online meeting and more than 300 participants continued to work efficiently on standards for the future needs of the industry. As a group, MPEG started to explore new application areas that will benefit from standardized compression technology in the future. A new web site has been created and can be found at http://mpeg.org/.

The official press release can be found here and comprises the following items:

  • Versatile Video Coding (VVC) Ultra-HD Verification Test Completed and Conformance and Reference Software Standards Reach their First Milestone
  • MPEG Completes Geometry-based Point Cloud Compression (G-PCC) Standard
  • MPEG Evaluates Extensions and Improvements to MPEG-G and Announces a Call for Evidence on New Advanced Genomics Features and Technologies
  • MPEG Issues Draft Call for Proposals on the Coded Representation of Haptics
  • MPEG Evaluates Responses to MPEG IPR Smart Contracts CfP
  • MPEG Completes Standard on Harmonization of DASH and CMAF
  • MPEG Completes 2nd Edition of the Omnidirectional Media Format (OMAF)
  • MPEG Completes the Low Complexity Enhancement Video Coding (LCEVC) Standard

In this report, I’d like to focus on VVC, G-PCC, DASH/CMAF, OMAF, and LCEVC.

Versatile Video Coding (VVC) Ultra-HD Verification Test Completed and Conformance & Reference Software Standards Reach their First Milestone

MPEG completed a verification testing assessment of the recently ratified Versatile Video Coding (VVC) standard for ultra-high definition (UHD) content with standard dynamic range, as may be used in newer streaming and broadcast television applications. The verification test was performed using rigorous subjective quality assessment methods and showed that VVC provides a compelling gain over its predecessor — the High Efficiency Video Coding (HEVC) standard produced in 2013. In particular, the verification test was performed using the VVC reference software implementation (VTM) and the recently released open-source encoder implementation of VVC (VVenC):

  • Using its reference software implementation (VTM), VVC showed bit rate savings of roughly 45% over HEVC for comparable subjective video quality.
  • Using VVenC, additional bit rate savings of more than 10% relative to VTM were observed, which at the same time runs significantly faster than the reference software implementation.

Additionally, the standardization work for both conformance testing and reference software for the VVC standard reached its first major milestone, i.e., progressing to the Committee Draft ballot in the ISO/IEC approval process. The conformance testing standard (ISO/IEC 23090-15) will ensure interoperability among the diverse applications that use the VVC standard, and the reference software standard (ISO/IEC 23090-16) will provide an illustration of the capabilities of VVC and a valuable example showing how the standard can be implemented. The reference software will further facilitate the adoption of the standard by being available for use as the basis of product implementations.

Research aspects: as for every new video codec, its compression efficiency and computational complexity are important performance metrics. While the reference software (VTM) provides a valid reference in terms of compression efficiency it is not optimized for runtime. VVenC seems to provide already a significant improvement and with x266 another open source implementation will be available soon. Together with AOMedia’s AV1 (including its possible successor AV2) we are looking forward to a lively future in the area of video codecs.

MPEG Completes Geometry-based Point Cloud Compression Standard

MPEG promoted its ISO/IEC 23090-9 Geometry-based Point Cloud Compression (G-PCC) standard to the Final Draft International Standard (FDIS) stage. G-PCC addresses lossless and lossy coding of time-varying 3D point clouds with associated attributes such as color and material properties. This technology is particularly suitable for sparse point clouds. ISO/IEC 23090-5 Video-based Point Cloud Compression (V-PCC), which reached the FDIS stage in July 2020, addresses the same problem but for dense point clouds, by projecting the (typically dense) 3D point clouds onto planes, and then processing the resulting sequences of 2D images using video compression techniques. The generalized approach of G-PCC, where the 3D geometry is directly coded to exploit any redundancy in the point cloud itself, is complementary to V-PCC and particularly useful for sparse point clouds representing large environments.

Point clouds are typically represented by extremely large amounts of data, which is a significant barrier to mass-market applications. However, the relative ease of capturing and rendering spatial information compared to other volumetric video representations makes point clouds increasingly popular for displaying immersive volumetric data. The current draft reference software implementation of a lossless, intra-frame G‐PCC encoder provides a compression ratio of up to 10:1 and lossy coding of acceptable quality for a variety of applications with a ratio of up to 35:1.

By providing high immersion at currently available bit rates, the G‐PCC standard will enable various applications such as 3D mapping, indoor navigation, autonomous driving, advanced augmented reality (AR) with environmental mapping, and cultural heritage.

Research aspects: the main research focus related to G-PCC and V-PCC is currently on compression efficiency but one should not dismiss its delivery aspects including its dynamic, adaptive streaming. A recent paper on this topic has been published in the IEEE Communications Magazine and is entitled “From Capturing to Rendering: Volumetric Media Delivery With Six Degrees of Freedom“.

MPEG Finalizes the Harmonization of DASH and CMAF

MPEG successfully completed the harmonization of Dynamic Adaptive Streaming over HTTP (DASH) with Common Media Application Format (CMAF) featuring a DASH profile for the use with CMAF (as part of the 1st Amendment of ISO/IEC 23009-1:2019 4th edition).

CMAF and DASH segments are both based on the ISO Base Media File Format (ISOBMFF), which per se enables smooth integration of both technologies. Most importantly, this DASH profile defines (a) a normative mapping of CMAF structures to DASH structures and (b) how to use Media Presentation Description (MPD) as a manifest format.
Additional tools added to this amendment include

  • DASH events and timed metadata track timing and processing models with in-band event streams,
  • a method for specifying the resynchronization points of segments when the segments have internal structures that allow container-level resynchronization,
  • an MPD patch framework that allows the transmission of partial MPD information as opposed to the complete MPD using the XML patch framework as defined in IETF RFC 5261, and
  • content protection enhancements for efficient signalling.

It is expected that the 5th edition of the MPEG DASH standard (ISO/IEC 23009-1) containing this change will be issued at the 133rd MPEG meeting in January 2021. An overview of DASH standards/features can be found in the Figure below.

Research aspects: one of the features enabled by CMAF is low latency streaming that is actively researched within the multimedia systems community (e.g., here). The main research focus has been related to the ABR logic while its impact on the network is not yet fully understood and requires strong collaboration among stakeholders along the delivery path including ingest, encoding, packaging, (encryption), content delivery network (CDN), and consumption. A holistic view on ABR is needed to enable innovation and the next step towards the future generation of streaming technologies (https://athena.itec.aau.at/).

MPEG Completes 2nd Edition of the Omnidirectional Media Format

MPEG completed the standardization of the 2nd edition of the Omnidirectional MediA Format (OMAF) by promoting ISO/IEC 23009-2 to Final Draft International Standard (FDIS) status including the following features:

  • “Late binding” technologies to deliver and present only that part of the content that adapts to the dynamically changing users’ viewpoint. To enable an efficient implementation of such a feature, this edition of the specification introduces the concept of bitstream rewriting, in which a compliant bitstream is dynamically generated that, by combining the received portions of the bitstream, covers only the users’ viewport on the client.
  • Extension of OMAF beyond 360-degree video. This edition introduces the concept of viewpoints, which can be considered as user-switchable camera positions for viewing content or as temporally contiguous parts of a storyline to provide multiple choices for the storyline a user can follow.
  • Enhances the use of video, image, or timed text overlays on top of omnidirectional visual background video or images related to a sphere or a viewport.

Research aspects: standards usually define formats to enable interoperability but various informative aspects are left open for industry competition and subject to research and development. The same holds for OMAF and its 2nd edition enables researchers and developers to work towards efficient viewport-adaptive implementations focusing on the users’ viewport.

MPEG Completes the Low Complexity Enhancement Video Coding Standard

MPEG is pleased to announce the completion of the new ISO/IEC 23094-2 standard, i.e., Low Complexity Enhancement Video Coding (MPEG-5 Part 2 LCEVC), which has been promoted to Final Draft International Standard (FDIS) at the 132nd MPEG meeting.

  • LCEVC adds an enhancement data stream that can appreciably improve the resolution and visual quality of reconstructed video with an effective compression efficiency of limited complexity by building on top of existing and future video codecs.
  • LCEVC can be used to complement devices originally designed only for decoding the base layer bitstream, by using firmware, operating system, or browser support. It is designed to be compatible with existing video workflows (e.g., CDNs, metadata management, DRM/CA) and network protocols (e.g., HLS, DASH, CMAF) to facilitate the rapid deployment of enhanced video services.
  • LCEVC can be used to deliver higher video quality in limited bandwidth scenarios, especially when the available bit rate is low for high-resolution video delivery and decoding complexity is a challenge. Typical use cases include mobile streaming and social media, and services that benefit from high-density/low-power transcoding.

Research aspects: LCEVC provides a kind of scalable video coding by combining hardware- and software-based decoders that allow for certain flexibility as part of regular software life cycle updates. However, LCEVC has been never compared to Scalable Video Coding (SVC) and Scalable High-Efficiency Video Coding (SHVC) which could be an interesting aspect for future work.

The 133rd MPEG meeting will be again an online meeting in January 2021.

Click here for more information about MPEG meetings and their developments.

Report from ACM MMSys 2020 by Conor Keighrey

Conor Keighrey (@ConorKeighrey) recently completed his PhD in the Athlone Institute of Technology which aimed to capture and understand the quality of experience (QoE) within a novel immersive multimedia speech and language assessment. He is currently interested in exploring the application of immersive multimedia technologies within health, education and training.


With a warm welcome from Istanbul, Ali C. Begen (Ozyegin University and Networked Media, Turkey) opened MMSys 2020 this year. In light of the global pandemic, the conference has taken a new format being delivered online for the first time. This, however, was not the only first for MMSys, Laura Toni (University College London, UK) is introduced as the first-ever female co-chair for the conference. This year, the organising committee presented gender and culturally diverse line-up of researchers from all around the globe. In parallel, two new grand challenges were introduced on the topics of “Improving Open-Source HEVC Encoding” and “Low-latency live streaming” for the first time ever at MMSys. 

The conference attracted paper submissions from a range of multimedia topics including but not limited to streaming technologies, networking, machine learning, volumetric media, and fake media detection tools. Core areas were complemented with in-depth keynotes delivered by academic and industry experts. 

Examples of such include Ryan Overbeck’s (Google, USA) keynote on “Light Fields – Building the Core Immersive Photo and Video Format for VR and AR” presented on the first day. Light fields provide the opportunity to capture full 6DOF and photo-realism in virtual reality. In his talk, Ryan provided key insight into the camera rigs and results from Google’s recent approach to perfect the capture of virtual representations of real-world spaces.

Later during the conference, Roderick Hodgson from Amber Video presented an interesting keynote on “Preserving Video Truth: an Anti-Deepfakes Narrative”. Roderick delivered a fantastic overview of the emerging area of deep fakes, and the application platforms which are being developed to detect, what will without a doubt be used as highly influential media streams in the future. Discussion closed with Stefano Petrangeli asking how the concept of deep fakes could be applied within the context of AR filters. Although AR is within its infancy from a visual quality perspective, the future may rapidly change how we perceive faces through immersive multimedia experiences utilizing AR filters. The concept is interesting, and it leads to the question of what future challenges will be seen with these emerging technologies.

Although not the main focus of the MMSys conference, the co-located workshops have always stood out for me. I have attended MMSys for the last three years and the warm welcome expressed by all members of the research community has been fantastic. However, the workshops have always shined through as they provide the opportunity to meet those who are working in focused areas of multimedia research. This year’s MMSys was no different as it hosted three workshops:

  • NOSSDAV – The International workshop on Network and Operating System Support for Digital Audio and Video
  • PV – The International Packet Video Workshop
  • MMVE – The International Workshop on Immersive Mixed and Virtual Environment Systems

With a focus on novel immersive media experiences, the MMVE workshop was highly successful with five key presentations exploring the topics of game mechanics, cloud computing, head-mounted display field of view prediction, navigation, and delay. Highlights include the work presented by Na Wang et. Al (George Mason University) which explored field of view prediction within augmented reality experiences on mobile platforms. With the emergence of new and proposed areas of research in augmented reality cloud, field of view predication will alleviate some of the challenges associated with the optimization of network communication for novel immersive multimedia experiences in the future. 

Unlike previous years, conference organisers faced the challenge of creating social events which were completely online. A trivia night hosted on Zoom brought over 40 members of the MMSys community together virtually to test their knowledge against a wide array of general knowledge. Utilizing online the platform “Kahoot”, attendees were challenged with a series of 47 questions. With great interaction from the audience, the event provided a great opportunity to socialise in a relaxing manner much like the real world counterpart! 

Leader boards towards the end were close, with Wei Tsang Ooi gaining the first place with a last-minute bonus question! Jean Botev and Roderick Hodgson took second and third place respectively. Events like this have always been a highlight of the MMSys community, we hope to see it take place this coming year in person over some quite beers and snacks!

Mea Wang opened the N2Women Meeting on the 10th of June. The event openly discussed core influential topics such as the separation of work and life needs within the research community. With a primary objective of assisting new researchers to maintain a healthy work and life balance. Overall, the event was a success, the topic of work and life balance is important for those at all stages of their research careers. Reflecting on my own personal experiences during my PhD, it can be a struggle to determine when to “clock out” and when to spend a few extra hours engaged with research. Key members of the community shared their own personal experiences, discussing other topics such the importance of mentoring, as academic supervisors can often become a mentor for life. Ozgu Alay discussed the importance of developing connections at research-orientated events. Those new to the community should not be afraid to spark a conversation with experts in the field, often the ideal approach is to take interest in their work and begin discussion from there. 

Lastly, Mea Wang mentioned that the initiative had initially acquired funding for the purpose of travel supports and childcare for those attending the conference. Due to the online nature this year, the supports have now been placed aside for next year’s event. Such funding provides a fantastic opportunity to support the cost of attending an international conference and engage with the multimedia community!

Closing the conference, Ali C. Begen opened with the announcement of the awards. The Best Paper Award was presented by Özgü Alay and Christian Timmerer who announced Nan Jiang et al as the winner for their paper on “QuRate: Power-Efficient Mobile Immersive Video Streaming”. The paper is available for download on the ACM Digital Library at the following link. The conference closed with the announcement of key celebrations for next year as the NOSSDAV workshop celebrates it’s 30thanniversary, and the Packet Video workshop celebrates the 25th anniversary! 

Overall, the expertise in multimedia shined through in this year’s ACM MMSys, with fantastic keynotes, presentations, and demonstrations from researchers around the globe. Although there are many benefits to attending a virtual conference, after numerous experiences this year I can’t help but feel there is something missing. Over the past 3 years, I’ve attended ACM MMSys in person as a PhD candidate, one of the major benefits of in person events are social encounters. Although this year’s iteration of ACM MMSys did a phenomenal job at the presentation of these events in the new and unexpected virtual format. I believe that it is these social events which shine through as they provide the opportunity to meet, discuss, and develop professional and social links throughout the multimedia research community in a more relaxed setting. 

As a result, I look forward to what Özgü Alay, Cheng-Hsin Hsu, and Ali C. Begen have in store for us at ACM Multimedia Systems 2021, located in the beautiful city of Istanbul, Turkey.

ACM IMX 2020: What does “going virtual” mean?

I work in the department of Research & Development, based in London, at the BBC. My interests include Interactive and Immersive Media, Interaction Design, Evaluative Methods, Virtual Reality, Augmented Reality, Synchronised Experiences & Connected Homes.
In the interest of full disclosure, I serve on the steering board of ACM Interactive Media Experiences (IMX) as Vice President for Conferences. It was an honour to be invited to the organising committee as one of IMX’s first Diversity Co-Chairs and as a Doctoral Consortium Co-Chair. I will also be the General Co-Chair for ACM IMX 2021
I hope you join us at IMX 2021 but if you need convincing, please read on about my experiences with IMX 2020!
I am quite active on Twitter (@What2DoNext), so I don’t think it came as a massive surprise to the IMX community that I won the award of the Best Social Media Reporter for ACM IMX 2020. Here are some of the award-winning tweets describing a workshop, a creative challenge, the opening keynote, my co-author presenting our paper (which incidentally won an honourable mention), the closing keynote and announcing the venue for ACM IMX 2021. This report is a summary of my experiences with IMX 2020.

Before the conference

Summary of activities at IMX 2020.

For the first time in the history of IMX, it was going entirely virtual. As if that wasn’t enough, IMX 2020 was the conference that got rebranded. In 2019, it was called TVX – Interactive Experiences for Television and Online Video! However, the steering committee unanimously voted to rename and rebrand it to reflect the fact that the conference had outgrown its original remit. The new name – Interactive Media Experiences (IMX) – was succinct and all-compassing of the conference’s current scope. With the rebrand, came a revival of principles and ethos. For the first time in the history of IMX, the organising committee worked with the steering committee to include Diversity co-chairs. 

The tech industry has suffered from a lack of diverse representation, and 2020 was the year, we decided to try to improve the situation in the IMX community. So, in addition to holding the position of the Doctoral Consortium co-chair, a relatively well-defined role, I was invited to be one of two Diversity chairs. The conference was going to take place in Barcelona, Spain – a city I have been lucky to visit multiple times. I love the people, the culture, the food (and wine) and the city, especially in the summer. The organisation was on track when, due to the unprecedented and global pandemic, we called in an emergency meeting to immediately transfer conference activities to various online platforms. Unfortunately, we lost one keynote, a panel, & 3 workshops, but we managed to transfer the rest into a live virtual event over a combination of platforms: Zoom, Mozilla Hubs, Miro, Slack & Sli.do.

The organising committee came together to reach out to the IMX community to ask for their help in converting their paper, poster and demo presentations to a format suitable for a virtual conference. We were quite amazed at how the community came together to make the virtual conference possible. Quite a few of us spent a lot of late nights getting everything ready!

We set about creating an accessible program and proceedings with links to the various online spaces scheduled to host track sessions and links to papers for better access using the SIGCHI progressive web app and the ACM Publishing System. It didn’t hurt that one of our Technical Program chairs, David A. Shamma, is the current SIGCHI VP of Operations. It was also helpful to have access to the ACM’s guide for virtual conferences and the experience gained by folks like Blair McIntyre (general co-chair of IEEE VR 2020 & Professor at Georgia Institute of Technology). We also got lots of support from Liv Erickson (Emerging Tech Product Manager at Mozilla).

About a week before the conference, Mario Montagud (General Co-Chair) sent an email to all registered attendees to inform them about how to join. Honestly, there were moments when I thought it might be touch and go. I had issues with my network, last-minute committee jobs kept popping up, and social distancing was becoming problematic.

During the conference…

Traditionally, IMX brings together international researchers and practitioners from a wide range of disciplines to attend workshops and challenges on the first day followed by two days of keynotes, panels, paper presentations, posters and demos. The activities are interspersed with lunches, networking with colleagues, copious coffee and a social event. 

The advantage of a virtual event is that I had no jet lag and I woke up in my bed at home on the day of the conference. However, I had to provide my coffee and lunches in the 2020 instantiation while (very briefly) considering the option of attending an international conference in my pyjamas. The other early difference is that I didn’t get a name badge in a conference branded registration packet, however, due to my committee roles at IMX 2020, the communications team made us zoom background ‘badges’ – which I loved!

Virtual Backgrounds for use in Zoom.

My first day was exciting and diverse! I had a three-hour workshop in the morning (starting 10 AM BST) titled “Toys & the TV: Serious Play” I had organised with my colleagues Suzanne Clark and Barbara Zambrini from BBC R&D, Christoph Ziegler from IRT and Rainer Kirchknopf from ZDF. We had a healthy interest in the workshop and enthusiastic contributions. A few of the attendees contributed idea/position papers while the other attendees were asked to support their favourite amongst the presented ideas. The groups of people were then sent to a breakout group to work on the concept and produce a newspaper-type summary page of an exemplar manifestation of the idea. We all worked over Zoom and a collaborative whiteboard on Miro. It was the virtual version of an interactive “post-it on a wall” type workshop. 

Then it was time for lunch and a cup of tea while managing home learning activities for my kids. Usually, I would have been hunting for a quiet place in the conference venue (depending on the time difference) to facetime with my kids. None of that in 2020! I could chat with my fellow organising committee to make sure things were running smoothly and offer aid if needed. Most of the day’s activities were being efficiently coordinated by Mario, based during the conference, at the i2Cat offices in Barcelona.

Around 4 PM (BST), I had a near four-hour creative challenge meet up. However, before that, I dropped into the IMX in Latin America workshop which was organised by colleagues in (you guessed it) Latin America as a way to introduce the work they do to IMX. Things were going well in that workshop, so after a quick hello to the organisers, I rushed over to take part in the creative challenge!

The creative challenge, titled “Snap Creative Challenge: Reimagine the Future of Storytelling with Augmented Reality (AR) ”, was an invited event. It was sponsored by Snap (Andrés Monroy-Hernández) and co-organised by Microsoft Research (Mar González-Franco) and BBC Research & Development (myself). Earlier in the year, over six months, eleven academic teams from eight countries created AR projects to demonstrate their vision of what storytelling would look like in a world where AR is more prevalent. We mentored the teams with the help of Anthony Steed (University College London), Nonny de La Peña (Emblematic Group), Rajan Vaish (Snap), Vanessa Pope (Queen Mary, University of London), and some colleagues who generously donated their time and expertise. We started with a welcome to the event (hosted on Zoom) given by Andrés Monroy-Hernández and then it was straight into presentations of the project. Snap created a summary video of the ideas presented on the day. 

Each project was distinct, unique and had the potential for so much more development and expansion. The creative challenge was closed by one of the co-founders of Snap (Bobby Murphy). After closing, some teams had office hours where we could go and have an extended chat about the various projects. Everyone was super enthusiastic and keen to share ideas.

It was 8.20 PM, so I had to end the day with my glass of wine with my other half, but I had a brilliant day and couldn’t get over how many interesting people I got to chat to – and it was just the first day of the conference! On the second day of the conference, Christian Timmerer (Alpen-Adria-Universität Klagenfurt & Bitmovin) and I had an hour-long doctoral consortium to host bright and early at 9 AM (BST). Three doctoral students presented a variety of topics. Each student was assigned two mentors who were experts in the field the students were working in. This year, the organising committee were keen to ensure diverse participation through all streams of the conference so, Christian and I kept this in mind in choosing mentors for the doctoral students. We were also able to invite mentors regardless of whether they would travel to a venue or not since everyone was attending online. In a way, it gave us more freedom to be diverse in our choices and thinking. Turns out one hour was whetting the appetite for everyone but the conference had other activities scheduled in the day, so I quite liked having a short break before my next session at noon! Time for another cup of coffee and a piece of chocolate! 

The general chairs (Pablo Cesar – CWI, Mario Montagud & Sergi Fernandez – i2Cat) welcomed everyone to the conference at noon (BST). Pablo gave a summary of the number of participants we had at IMX. This is one of the most unfortunate things in a virtual conference. It’s difficult to get a sense of ‘being together’ with the other attendees at the conference but we got some idea from Pablo. Asreen Rostami (RISE) and I gave a summary of diversity & inclusion activities we put in place through the organisation of the conference to begin the process of improving the representation of under-represented groups within the IMX community. Unfortunately, a lot of the plans were not implemented once IMX 2020 went virtual but some of the guidance to inject diverse thinking into all parts of the conference were still carried out – ensuring that the make-up of the ACs was diverse, encouraging workshop organisers to include a diverse set of participants and use inclusive language, casting a wider net in our search for keynotes and mentors, and selecting a time period to run the conference that was best suited to a majority of our attendees. The Technical Program Co-Chair (Lucia D’Acunto, TNO) gave a summary of how the tracks were populated w.r.t papers. To round off the opening welcome for IMX 2020, Mario gave an overview of communication channels, the tools used and the conference program. The wonderful thing about being in a virtual conference is that you can easily screenshot presentations, so you have a good record of what happened. Under pre-pandemic situations, I would have photographed the slides on a screen on stage from my seat in the auditorium hall. So unfashionable in 2020 – you will agree. Getting a visual reminder of talks is useful if you want to remember key points! It also exceedingly good for illustrations as part of a report you might write about the conference three months later.

Sergi Fernandez introduced the opening keynote: Mel Slater (University of Barcelona) who talked about using Virtual Reality to Change Attitudes and Behaviour. Mel was my doctoral supervisor back in between 2001 and 2006 when I did a PhD at UCL. He was the reason I decided to focus my postgraduate studies to build expressive virtual characters. It was fantastic to “go to a conference with him” again even if he got the seat with the better weather. His opening keynote was engaging, entertaining and gave a lot of food for thought. He also had a new video of his virtual self being a rock star. To this day, I believe this is the main reason he got into VR in the first place! And why ever not?

Immediately after Mels’ talk and Q&A session, it was time to inform attendees about the demos and posters available for viewing as part of the conference. The demos and posters were displayed in a series of Mozilla Hubs rooms (domes) created by Jesús Gutierrez (Universidad Politecnica de Madrid, Demo co-chair) and I, based off some models given to us by Liv (Mozilla). We were able to personalise the virtual spaces and give it a Spanish twist using a couple of panorama images David A. Shamma (FXPAL & Technical Program co-chair for IMX 2020) found on Flickr. Ayman and Julie Williamson (Univ. of Glasgow) also enabled the infrastructure behind the IMX Hub spaces. Jesús and I gave a short ‘how-to’ presentation to let attendees know what to expect in the IMX Hub Spaces. After our presentation, Mario played a video of pitches giving us quick lightning summaries of the demos, work-in-progress poster presentations and doctoral consortium poster displays.

Thirty minutes later, it was time for the first paper session of the day (and the conference)! Ayman chaired the first four papers in the conference in a session titled ‘Augmented TV’. The first paper presented was one I co-authored with Radu-Daniel Vatavu (Univ. Stefan cel Mare of Suceava), Pejman Saeghe (Univ. of Manchester), Teresa Chambel (Univ. of Lisbon), and Marian F Ursu (Univ. of York). The paper (‘Conceptualising Augmented Reality Television for the Living Room’) examined the characteristics of Augmented Reality Television (ARTV) by analysing commonly accepted views on augmented and mixed reality systems, by looking at previous work, by looking at tangential fields (ambient media, interactive TV, 3D TV etc.) and by proposing a conceptual framework for ARTV – the “Augmented Reality Television Continuum”. The presentation is on the ACM SIGCHI’s YouTube channel if you feel like watching Pejman talk about the paper instead of reading it or maybe in addition to reading it!

Ayman and Pejman talking about our paper ‘Conceptualising Augmented Reality Television for the Living Room

I did not present the paper, but I was still relieved that it was done! I have noticed that once a paper I was involved with is done, I tend to have enough headspace to engage and ask questions of other authors. So that’s what I was able to do for the rest of the conference. In that same first paper session, Simon von der Au (IRT) et al. presented ‘The SpaceStation App: Design and Evaluation of an AR Application for Educational Television’ in which they got to work with models and videos of the International Space Station! Now, I love natural history documentaries so when I need to work with content, I don’t think I can go wrong if I choose David Attenborough narrated content – think Blue Planet. However, the ISS is a close second! They also cited two of my co-authored papers – Ziegler et al. 2018 and Saeghe et al. 2019 – which is always lovely to see.

After the first session, we had a 30-minute break before making our way to the Hubs Domes to look at demos and posters. Our outstanding student volunteers were deployed to guide IMX attendees to various domes. It was very satisfying seeing all our Hubs space populated with demos/posters with snippets of conversation flowing past as I passed through the domes to see how folks fared in the space. The whole experience resulted in a lot of selfies and images!

There were moments of delight throughout the event. I thought I’d rebel against my mom and get pink hair! Pablo got purple hair and IRL he does not have hair that colour (or that uniformly distributed). Ayman and I tried getting some virtual drinks – I got myself a pina colada while Ayman stayed sober. I also visited all the posters and demos which seldom happens when I attend conferences IRL. In Hubs, it was an excellent way to ‘bump into’ folks. I have been in the IMX community for a while, so I was able to recognise many people by reading their floating name labels. Most of their avatars looked nothing like the people I knew! Christian and Omar Niamut (TNO) had more photorealistic avatars but even those were only recognisable if I squinted! I was also very jealous of Omar’s (and Julie’s) virtual hands which they got because they visited the domes using their VR headsets. It was loads of fun seeing how people represented themselves through their virtual clothes, hair and body choice. 

All of the demos and posters were well presented but the ‘Watching Together but Apart’ caught my eye because I knew my colleagues Rajiv RamdhanyLibby Miller, and Kristian Hentschel built ‘BBC Together’ – an experimental BBC R&D prototype to enable people to watch and listen to BBC programmes together while they are physically apart. It was a response to the situation brought to a lot of our doorsteps by the pandemic! It was amazing to see that another research group responded in the same way to build a similar application. It was great fun talking to Jannik Munk Bryld about their project and compare notes.

Once the paper session was over, there was a 45 minutes break to stretch our legs and rest our eyes. Longer in-between session breaks are a necessity in virtual conferences. At 2:30 PM (BST), it was time to listen to two industry talks chaired by Steve Schirra (YouTube) and Mikel Zorrilla (Vicomtech). Mike Darnell (Samsung Electronics America) talked of conclusions he drew from a survey study of hundreds of participants which focused on user behaviour when it came to choosing what to watch on the TV. The main take-home message was that people generally knew in advance exactly what they want to watch on TV.

Natàlia Herèdia (Media UX Design) talked of her pop-up media lab focusing on designing an OTT for a local public channel. She spoke of the process she used and gave a summary of her work on reaching new audiences. 

After the industry talk, it was time for a half an hour break. The organising committee and student volunteers went out to the demo domes in Hubs to get a group selfie! We realised that Ayman has serious ambitions when it comes to cinematography. After we got our shots, we attended another paper session chaired by Aisling Kelliher (Virginia Tech) titled ‘Live Production and Audience’. Other people might have mosquitos or mice as a pest problem. In this paper session, I learnt that there are people like Aisling whose pest problems are a little more significant – like bear sized bigger! So many revelations in such a short time! 

The first paper of the last session, titled ‘DAX: Data-Driven Audience Experiences in Esports’, was presented by Athanasios Vasileios Kokkinakis (Univ. of York). He gave a fascinating insight into how companion screen applications might allow audiences to consume interesting data-driven insights during and around the broadcasts of Esports. It was great to see this wort of work since I have some history of working on companion screen applications with sports being one of the genres that could benefit from multi-device applications. The paper won the best paper award! Yvette Wohn (New Jersey Institute of Technology) presented a paper, titled ‘Audience Management practices of Live Streamers on Twitch’, in which she interviewed Twitch streamers to understand how streamers discover audience composition and use appropriate mechanisms to interact with them. The last paper of the conference was presented by Marian –  ‘Authoring Interactive Fictional Stories in Object-Based Media (OBM)’. The paper referred to quite a few BBC R&D OBM projects. Again, it was quite lovely to see some reaffirmation of ideas with similar thought processes flowing through the screen.

At 6 PM (BST), I had the honour of chairing the closing keynote by Nonny. Nonny had a lot of unique immersive journalism pieces to show us! She also gave us a live demo of her XR creation, remixing and sharing platform – REACH.love. She imported a virtual character inspired by the Futurama animated character – Bender. Incidentally, my very first virtual character was also created in Bender’s image. I had to remove the antenna off his head because Anthony Steed, who was my project lead at the time, wasn’t as appreciative of my character design – tragic times. 

Alas, we had come near the end of the conference which meant it was time for Mario to give a summary of numbers to indicate how many attendees participated in IMX 2020 – spoiler: it was the highest attendance yet. He also handed out various awards. It turns out that our co-authored paper on ‘Conceptualising Augmented Reality Television for the Living Room’ got an honourable mention! More importantly, I was awarded the best social media reporter which is of course why you are reading this report! I guess this is an encouragement to keep on tweeting about IMX!

Frank Bentley (Verizon Media, IMX Steering Committee president) gave a short presentation in which he acknowledged that it was June the 19th – Juneteenth (Freedom Day) in the US. He gave a couple of poignant suggestions on how we might consider marking the day. He also talked about the rebranding exercise that resulted in the conference going from TVX to IMX.

Frank also announced that we are looking for host bids for IMX 2022! As VP of Conferences, I would be very excited to hear from you! Please do email me if you are looking for information about hosting an IMX conference in 2022 or beyond. You can also drop me a tweet @What2DoNext!

He then handed over the floor to Yvette and me to announce the proposed venue of IMX 2021 – New York! A few of the organising committee positions are still up for grabs. Do consider joining our exciting and diverse organising committee if you feel like you could contribute to making IMX 2021 a success! In the meantime, I managed to persuade my lovely colleague at BBC R&D (Vicky Barlow) to make a teaser video to introduce IMX 2021.

That brought us to the end of IMX 2020, sadly. The stragglers of the IMX community lingered a little to have a little bit of chat over zoom which was lovely.

After the conference…

You would think that once the conference was over, that was it but no, not so. In years past, all that was left to do was to stalk people you met at the conference on LinkedIn to make sure the ‘virtual business cards’ were saved. Of course, I did a bit of that this year as well. However, this year had been a much more involved experience. I have had a chance to define the role of Diversity chairs with Asreen. I have had the chance to work with Ayman, Julie, Jesús, Liv and Blair to bring demos and posters to Hubs as part of the IMX 2020 virtual experience. It was a blast! You might have thought that I would be taking a rest! You would be wrong! 

I am joining forces with Yvette and the rest of a whole new committee to start organising IMX 2021 – New York into a format that continues the success of IMX 2020 and strive to improve on it. Finally, let’s not forget Frank’s reminder that we are looking for colleagues out there (maybe you?) to host IMX 2022 and beyond! 

The story continues… Do get in touch!

JPEG Column: 88th JPEG Meeting

The 88th JPEG meeting initially planned to be held in Geneva, Switzerland, was held online because of the Covid-19 outbreak.

JPEG experts organised a large number of sessions spread over day and night to allow the remote participation of multiple time zones. A very intense activity has resulted in multiple outputs and initiatives. In particular two new explorations activities were initiated. The first explores possible standardisation needs to address the growing emergence of fake media by introducing appropriate security features to prevent the misuse of media content. The latest, considers the use of DNA for media content archival.

Furthermore, JPEG has started the work on the new part 8 of the JPEG Systems standard, called JPEG snack, for interoperable rich image experiences, and it is holding two Call for Evidence, JPEG AI and JPEG Pleno Point cloud coding.

Despite travel restrictions, JPEG Committee has managed to keep up with the majority of its plans, defined prior to the COVID-19 outbreak. An overview of the different activities is represented in Fig. 1.

Figure 1 – JPEG Planned Timeline.

The 88th JPEG meeting had the following highlights:

  • JPEG explores standardization needs to address fake media
  • JPEG Pleno Point Cloud call for evidence
  • JPEG DNA – based archival of media content using DNA
  • JPEG AI call for evidence
  • JPEG XL standard evolves to a final specification
  • JPEG Systems part 8, named JPEG Snack progress
  • JPEG XS Part-1 2nd Edition first ballot.

JPEG explores standardization needs to address fake media

Recent advances in media manipulation, particularly deep learning-based approaches, can produce near realistic media content that is almost indistinguishable from authentic content to the human eye. These developments open opportunities for production of new types of media contents that are useful for the entertainment industry and other business usage, e.g., creation of special effects or artificial natural scene production with actors in the studio. However, this also leads to issues relating to fake media generation undermining the integrity of the media (e.g., deepfakes), copyright infringements and defamation to mention a few examples. Misuse of manipulated media can cause social unrest, spread rumours for political gain or encourage hate crimes. In this context, the term ‘fake’ is used here to refer to any manipulated media, independently of its ‘good’ or ‘bad’ intention.

In many application domains, fake media producers may want or may be required to declare the type of manipulations performed, in opposition to other situations where the intention is to ‘hide’ the mere existence of such manipulations. This is already leading various Governmental organizations to plan new legislation or companies (especially social media platforms or news outlets) to develop mechanisms that would clearly detect and annotate manipulated media contents when they are shared. While growing efforts are noticeable in developing technologies, there is a need to have a standard for the media/metadata format, e.g., a JPEG standard that facilitates a secure and reliable annotation of fake media, both in good faith and malicious usage scenarios. To better understand the fake media ecosystem and needs in terms of standardization, the JPEG Committee has initiated an in-depth analysis of fake media use cases, naturally independently of the “intentions”.     

More information on the initiative is available on the JPEG website. Interested parties are invited to join the above AHG through the following URL: http://listregistration.jpeg.org.

JPEG Pleno Point Cloud

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 88th JPEG meeting, the JPEG Committee released a Final Call for Evidence on JPEG Pleno Point Cloud Coding that focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. Between the 88th and 89th meetings, the JPEG Committee will be actively promoting this activity and collecting registrations to participate in the Call for Evidence.

JPEG DNA

In digital media information, notably images, the relevant representation symbols, e.g. quantized DCT coefficients, are expressed in bits (i.e., binary units) but they could be expressed in any other units, for example the DNA units which follow a 4-ary representation basis. This would mean that DNA molecules may be created with a specific DNA units’ configuration which stores some media representation symbols, e.g. the symbols of a JPEG image, thus leading to DNA-based media storage as a form of molecular data storage. JPEG standards have been used in storage and archival of digital pictures as well as moving images. While the legacy JPEG format is widely used for photo storage in SD cards, as well as archival of pictures by consumers,  JPEG 2000 as described in ISO/IEC 15444 is used in many archival applications, notably for preservation of cultural heritage in form of visual data as pictures and video in digital format. This puts the JPEG Committee in a unique position to address the challenges in DNA-based storage by creating a standard image representation and coding for such applications. To explore the latter, an AHG has been established. Interested parties are invited to join the above AHG through the following URL: http://listregistration.jpeg.org.

JPEG AI

At the 88th meeting, the submissions to the Call for Evidence were reported and analysed. Six submissions were received in response to the Call for Evidence made in coordination with the IEEE MMSP 2020 Challenge. The submissions along with the anchors were already evaluated using objective quality metrics. Following this initial process, subjective experiments have been designed to compare the performance of all submissions. Thus, during this meeting, the main focus of JPEG AI was on the presentation and discussion of the objective performance evaluation of all submissions as well as the definition of the methodology for the subjective evaluation that will be made next.

JPEG XL

The standardization of the JPEG XL image coding system is nearing completion. Final technical comments by national bodies have been received for the codestream (Part 1); the DIS has been approved and an FDIS text is under preparation. The container file format (Part 2) is progressing to the DIS stage. A white paper summarizing key features of JPEG XL is available at http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf.

JPEG Systems

ISO/IEC has approved the JPEG Snack initiative to deliver interoperable rich image experiences.  As a result, the JPEG Systems Part 8 (ISO/IEC 19566-8) has been created to define the file format construction and the metadata signalling and descriptions which enable animation with transition effects.  A Call for Participation and updated use cases and requirements have been issued. The CfP and the use cases and requirements documents are available at http://ds.jpeg.org/documents/wg1n87035-REQ-JPEG_Snack_Use_Cases_and_Requirements_v2_2.pdf and http://ds.jpeg.org/documents/wg1n88032-SI-CfP_JPEG_Snack.pdf respectively.

An updated working draft for the JLINK initiative was completed.  Interest parties are encouraged to review the JLINK Working Draft 3.0 available at http://ds.jpeg.org/documents/wg1n88031-SI-JLINK_WD_3_0.pdf

JPEG XS

The JPEG committee is pleased to announce a significant step in the standardization of an efficient Bayer image compression scheme, with the first ballot of the 2nd Edition of JPEG XS Part-1.

The new edition of this visually lossless low-latency and lightweight compression scheme now includes image sensor coding tools allowing efficient compression of Color-Filtered Array (CFA) data. This compression enables better quality and lower complexity than the corresponding compression in the RGB domain.  It can be used as a mezzanine codec in various markets such as real-time video storage in and outside of cameras, and data compression onboard autonomous cars.

Final Quote

“Fake Media has become a challenge with the wide-spread manipulated contents in the news. JPEG is determined to mitigate this problem by providing standards that can securely identify manipulated contents.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No 89, will be held online from October 5 to 9, 2020.

Report from the MMM 2020 Special Session on Multimedia Datasets for Repeatable Experimentation (MDRE 2020)

Introduction

Information retrieval and multimedia content access have a long history of comparative evaluation, and many of the advances in the area over the past decade can be attributed to the availability of open datasets that support comparative and repeatable experimentation. Hence, sharing data and code to allow other researchers to replicate research results is needed in the multimedia modeling field, as it helps to improve the performance of systems and the reproducibility of published papers.

This report summarizes the special session on Multimedia Datasets for Repeatable Experimentation (MDRE 2020), which was organized at the 26th International Conference on MultiMedia Modeling (MMM 2020), held in January 2020 in Daejeon, South Korea.

The intent of these special sessions is to be a venue for releasing datasets to the multimedia community and discussing dataset related issues. The presentation mode in 2020 was to have short presentations (approximately 8 minutes), followed by a panel discussion moderated by Aaron Duane. In the following we summarize the special session, including its talks, questions, and discussions.

Presentations

GLENDA: Gynecologic Laparoscopy Endometriosis Dataset

The session began with a presentation on ‘GLENDA: Gynecologic Laparoscopy Endometriosis Dataset’ [1], given by Andreas Leibetseder from the University of Klagenfurt. The researchers worked with experts on gynecologic laparoscopy, a type of minimally invasive surgery (MIS), that is performed via a live feed of a patient’s abdomen to survey the insertion and handling of various instruments for conducting medical treatments. Adopting this kind of surgical intervention not only facilitates a great variety of treatments but also the possibility of recording such video streams is essential for numerous post-surgical activities, such as treatment planning, case documentation and education. The process of manually analyzing these surgical recordings, as it is carried out in current practice, usually proves tediously time-consuming. In order to improve upon this situation, more sophisticated computer vision as well as machine learning approaches are actively being developed. Since most of these approaches rely heavily on sample data that, especially in the medical field, is only sparsely available, the researchers published the Gynecologic Laparoscopy ENdometriosis DAtaset (GLENDA) – an image dataset containing region-based annotations of a common medical condition called endometriosis. 

Endometriosis is a disorder involving the dislocation of uterine-like tissue. Andreas explained that this dataset is the first of its kind and was created in collaboration with leading medical experts in the field. GLENDA contains over 25K images, about half of which are pathological, i.e., showing endometriosis, and the other half non-pathological, i.e., containing no visible endometriosis. The accompanying paper thoroughly described the data collection process, the dataset’s properties and structure, while also discussing its limitations. The authors plan on continuously extending GLENDA, including the addition of other relevant categories and ultimately lesion severities. Furthermore, they are in the process of collecting specific ”endometriosis suspicion” class annotations in all categories for capturing a common situation where at times it proves difficult, even for endometriosis specialists, to classify the anomaly without further inspection. The difficulty in classification may be due to several reasons, such as visible video artifacts. Including such challenging examples in the dataset may greatly improve the quality of endometriosis classifiers.

Kvasir-SEG: A Segmented Polyp Dataset

The second presentation was given by Debesh Jha from the Simula Research Laboratory, who introduced the work entitled ‘Kvasir-SEG: A Segmented Polyp Dataset’ [2]. Debesh explained that pixel-wise image segmentation is a highly demanding task in medical image analysis. Similar to the aforementioned GLENDA dataset, it is difficult to find annotated medical images with corresponding segmentation masks in practice. The Kvasir-SEG dataset is an open-access corpus of gastrointestinal polyp images and corresponding segmentation masks, which has been further manually annotated and verified by an experienced gastroenterologist. The researchers demonstrated the use of their dataset with both a traditional segmentation approach and a modern deep learning-based CNN approach. In addition to presenting the Kvasir-SEG dataset, Debesh also discussed the FCM clustering algorithm and the ResUNet-based approach for automatic polyp segmentation they presented in their paper. The results show that the ResUNet model was superior to FCM clustering.

The researchers released the Kvasir-SEG dataset as an open-source dataset to the multimedia and medical research communities, in the hope that it can help evaluate and compare existing and future computer vision methods. By adding segmentation masks to the Kvasir dataset, which until today only consisted of framewise annotations, the authors have enabled multimedia and computer vision researchers to contribute in the field of polyp segmentation and automatic analysis of colonoscopy videos. This could boost the performance of other computer vision methods and may be an important step towards building clinically acceptable CAI methods for improved patient care.

Rethinking the Test Collection Methodology for Personal Self-Tracking Data

The third presentation was given by Cathal Gurrin from Dublin City University and was titled ‘Rethinking the Test Collection Methodology for Personal Self-Tracking Data’ [3]. Cathal argued that, although vast volumes of personal data are being gathered daily by individuals, the MMM community has not really been tackling the challenge of developing novel retrieval algorithms for this data, due to the challenges of getting access to the data in the first place. While initial efforts have taken place on a small scale, it is their conjecture that a new evaluation paradigm is required in order to make progress in analysing, modeling and retrieving from personal data archives. In their position paper, the researchers proposed a new model of Evaluation-as-a-Service that re-imagines the test collection methodology for personal multimedia data in order to address the many challenges of releasing test collections of personal multimedia data. 

After providing a detailed overview of prior research on the creation and use of self-tracking data for research, the authors identified issues that emerge when creating test collections of self-tracking data as commonly used by shared evaluation campaigns. This includes in particular the challenge of finding self-trackers willing to share their data, legal constraints that require expensive data preparation and cleaning before a potential release to the public, as well as ethical considerations. The Evaluation-as-a-Service model is a novel evaluation paradigm meant to address these challenges by enabling collaborative research on personal self-tracking data. The model relies on the idea of a central data infrastructure that guarantees full protection of the data, while at the same time allowing algorithms to operate on this protected data. Cathal highlighted the importance of data banks in this scenario. Finally, he briefly outlined technical aspects that would allow setting up a shared evaluation campaign on self-tracking data.

Experiences and Insights from the Collection of a Novel Multimedia EEG Dataset

The final presentation of the session was also provided by Cathal Gurrin from Dublin City University in which he introduced the topic ‘Experiences and Insights from the Collection of a Novel Multimedia EEG Dataset’ [4]. This work described how there is a growing interest in utilising novel signal sources such as EEG (Electroencephalography) in multimedia research. When using such signals, subtle limitations are often not readily apparent without significant domain expertise. Multimedia research outputs incorporating EEG signals can fail to be replicated when only minor modifications have been made to an experiment or seemingly unimportant (or unstated) details are changed. Cathal claimed that this can lead to over-optimistic or over-pessimistic viewpoints on the potential real-world utility of these signals in multimedia research activities.

In their paper, the researchers described the EEG/MM dataset and presented a summary of distilled experiences and knowledge gained during the preparation (and utilisation) of the dataset that supported a collaborative neural-image labelling benchmarking task. They stated that the goal of this task was to collaboratively identify machine learning approaches that would support the use of EEG signals in areas such as image labelling and multimedia modeling or retrieval. The researchers stressed that this research is relevant for the multimedia community as it suggests a template experimental paradigm (along with datasets and a baseline system) upon which researchers can explore multimedia image labelling using a brain-computer interface. In addition, the paper provided insights and experience of commonly encountered issues (and useful signals) when conducting research that utilises EEG in multimedia contexts. Finally, this work provided insight on how an EEG dataset can be used to support a collaborative neural-image labelling benchmarking task.

Discussion

After the presentations, Aaron Duane moderated a panel discussion in which all presenters participated, as well as Björn Þór Jónsson who joined the panel as one of the special session chairs.

The panel began with a question about how the research community should address data anonymity in large multimedia datasets and how, even if the dataset is isolated and anonymised, data analysis techniques can be utilised to reverse this process either partially or completely. The panel agreed this was an important question and acknowledged that there is no simple answer. Cathal Gurrin stated that there is less of a restrictive onus on the datasets used for such research because the owners of the dataset often provide it with full knowledge of how it will be used.

As a follow up, the questioner asked the panel about GDPR compliancy in this context and the fact that uploaders could potentially change their minds about allowing their datasets to be used in research several years after it was released. The panel acknowledged this remains an open concern and even expanded on such concerns by presenting an additional concern, namely the malicious uploading of data without the consent of the owner. One solution to this which was provided by the panel was the introduction of an additional layer of security in the form of a human curator who could review the security and privacy concerns of a dataset during its generation, as is the case with some datasets of personal data currently under release to the community. 

The discussion continued with much interest continuing to be directed toward effective privacy in datasets, especially when dealing with personal data, such as those generated by lifeloggers. One audience member recalled a story where a personal dataset was publicly released and individuals were able to garner personal information about individuals who were not the original uploader of the dataset and who did not consent to their face or personal information being publicly released. Cathal and Björn acknowledged that this remains an issue but drew attention to advanced censoring techniques such as automatic face blurring which is rapidly maturing in the domain. Furthermore, they claimed that the proposed model of Evaluation-as-a-Service discussed in Cathal’s earlier presentation could help to further alleviate some of these concerns.

Steering the conversation away from exclusively dealing with data privacy concerns, Aaron directed a question at Debesh and Andreas regarding the challenges and limitations associated with working directly with medical professionals to generate their datasets related to medical disorders. Debesh stated that there were numerous challenges such as the medical professionals being unfamiliar with the tools used in the generation of this work and that in many cases circumstances required multiple medical professionals and their opinion as they would often disagree. This generated significant technical and administrative overhead for the researchers and their work which resulted in a tedious speed of progress. Andreas stated that such issues were identical for him and his colleagues and highlighted the importance of effective communication between the medical experts and the technical researchers.

Towards the end of the discussion, the panel discussed the concept of encouraging the release of more large-scale multimedia datasets for experimentation and what challenges are currently associated with that. The panel responded that the process remains difficult but having special sessions such as this are very helpful. The recognition of papers associated with multimedia datasets is becoming increasingly apparent with many exceptional papers earning hundreds of citations within the community. The panel also stated that we should be mindful of the nature of each dataset as releasing the same type of dataset, again and again, is not beneficial and has the potential to do more harm than good.

Conclusions

The MDRE special session, in its second incarnation at MMM 2020, was organised to facilitate the publication of high-quality datasets, and for community discussions on the methodology of dataset creation. The creation of reliable and shareable research artifacts, such as datasets with reliable ground truths, usually represents tremendous effort; effort that is rarely valued by publication venues, funding agencies or research institutions. In turn, this leads many researchers to focus on short-term research goals, with an emphasis on improving results on existing and often outdated datasets by small margins, rather than boldly venturing where no researchers have gone before. Overall, we believe that more emphasis on reliable and reproducible results would serve our community well, and the MDRE special session is a small effort towards that goal.

Acknowledgements

The session was organized by the authors of the report, in collaboration with Duc-Tien Dang-Nguyen (Dublin City University), who could not attend MMM. The panel format of the special session made the discussions much more engaging than that of a traditional special session. We would like to thank the presenters, and their co-authors for their excellent contributions, as well as the members of the audience who contributed greatly to the session.

References

  • [1] Leibetseder A., Kletz S., Schoeffmann K., Keckstein S., and Keckstein J. “GLENDA: Gynecologic Laparoscopy Endometriosis Dataset.” In: Cheng WH. et al. (eds) MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, vol. 11962, 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_36.
  • [2] Jha D., Smedsrud P.H., Riegler M.A., Halvorsen P., De Lange T., Johansen D., and Johansen H.D. “Kvasir-SEG: A Segmented Polyp Dataset.” In: Cheng WH. et al. (eds) MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, vol. 11962, 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_37.
  • [3] Hopfgartner F., Gurrin C., and Joho H. “Rethinking the Test Collection Methodology for Personal Self-tracking Data.” In: Cheng WH. et al. (eds) MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, vol. 11962, 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_38.
  • [4] Healy G., Wang Z., Ward T., Smeaton A., and Gurrin C. “Experiences and Insights from the Collection of a Novel Multimedia EEG Dataset.” In: Cheng WH. et al. (eds) MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, vol. 11962, 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_39.

JPEG Column: 87th JPEG Meeting

The 87th JPEG meeting initially planned to be held in Erlangen, Germany, was held online from 25-30, April 2020 because of the Covid-19 outbreak. JPEG experts participated in a number of online meetings attempting to make them as effective as possible while considering participation from different time zones, ranging from Australia to California, U.S.A.

JPEG decided to proceed with a Second Call for Evidence on JPEG Pleno Point Cloud Coding and continued work to prepare for contributions to the previous Call for Evidence on Learning-based Image Coding Technologies (JPEG AI).

The 87th JPEG meeting had the following highlights:

  • JPEG Pleno Point Cloud Coding issues a Call for Evidence on coding solutions supporting scalability and random access of decoded point clouds.
  • JPEG AI defines evaluation methodologies of the Call for Evidence on machine learning based image coding solutions.
  • JPEG XL defines the file format compatible with existing formats. 
  • JPEG exploration on Media Blockchain releases use cases and requirements.
  • JPEG Systems releases a first version of JPEG Snack use cases and requirements.
  • JPEG XS announces significant improvement of the quality of raw-Bayer image sensor data compression.

JPEG Pleno Point Cloud

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 87th JPEG meeting, the JPEG Committee released a Second Call for Evidence on JPEG Pleno Point Cloud Coding that focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. The Second Call for Evidence on JPEG Pleno Point Cloud Coding has a revised timeline reflecting changes in the activity due to the 2020 COVID-19 Pandemic. A Final Call for Evidence on JPEG Pleno Point Cloud Coding is planned to be released in July 2020.

JPEG AI

The main focus of JPEG AI was on the promotion and definition of the submission and evaluation methodologies of the Call for Evidence (in coordination with the IEEE MMSP 2020 Challenge) that was issued as outcome of the 86th JPEG meeting, Sydney, Australia.

JPEG XL

The File Format has been defined for JPEG XL (ISO/IEC 18181-1) codestream, metadata and extensions. The file format enables compatibility with ISOBMFF, JUMBF, XMP, Exif and other existing standards. Standardization has now reached the Committee Draft stage and the DIS ballot is ongoing. A white paper about JPEG XL’s features and tools was approved at this meeting and is available on the jpeg.org website.

JPEG exploration on Media Blockchain – Call for feedback on use cases and requirements

JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address many privacy and security related challenges in digital media applications. This includes digital rights management, privacy and security, integrity verification, and authenticity, that impacts society in several ways including the loss of income in the creative sector due to piracy, the spread of fake news, or evidence tampering for fraud purposes.

JPEG is exploring standardization needs related to media blockchain to ensure seamless interoperability and integration of blockchain technology with widely accepted media standards. In this context, the JPEG Committee announces a call for feedback from interested stakeholders on the first public release of the use cases and requirements document.

JPEG Systems initiates standardisation of JPEG Snack

Media “snacking”, the consumption of multimedia in short bursts (less than 15 minutes) has become globally popular. JPEG recognizes the need for standardizing how snack images are constructed to ensure interoperability. A first version of JPEG Snack use cases and requirements is now complete and publicly available on JPEG website inviting feedback from stakeholders.

JPEG made progress on a fundamental capability of the JPEG file structure with enhancements to JPEG Universal Metadata Box Format (JUMBF) to support embedding common file types; the DIS text for JUMBF Amendment 1 is ready for ballot. Likewise JPEG 360 Amendment 1 DIS text is ready for ballot; this amendment supports stereoscopic 360 degree images, accelerated rendering for regions-of-interest, and removes the XMP signature block from the metadata description.

JPEG XS – The JPEG committee is pleased to announce significant improvement of the quality of its upcoming Bayer compression.

Over the past year, an improvement of around 2dB has been observed for the new coding tools currently being developed for image sensor compression within JPEG XS. This visually lossless low-latency and lightweight compression scheme can be used as a mezzanine codec in various markets like real-time video storage inside and outside of cameras, and data compression onboard autonomous cars. Mathematically lossless capability is also investigated and encapsulation within MXF or SMPTE ST2110-22 is currently being finalized.

Final Quote

“JPEG is committed to the development of new standards that provide state of the art imaging solutions to the largest spectrum of stakeholders. During the 87th meeting, held online because of the Covid-19 pandemic, JPEG progressed well with its current and even launched new activities. Although some timelines had to be revisited, overall, no disruptions of the workplan have occurred.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

More information about JPEG and its work is available at jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans (pr@jpeg.org) of the JPEG Communication Subgroup.

If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list on http://jpeg-news-list.jpeg.org.  

Future JPEG meetings are planned as follows:

  • No 88, initially planned in Geneva, Switzerland, July 4 to 10, 2020, will be held online from July 7 to 10, 2020.

MPEG Column: 129th MPEG Meeting in Brussels, Belgium

The original blog post can be found at the Bitmovin Techblog and has been modified/updated here to focus on and highlight research aspects.

The 129th MPEG meeting concluded on January 17, 2020 in Brussels, Belgium with the following topics:

  • Coded representation of immersive media – WG11 promotes Network-Based Media Processing (NBMP) to the final stage
  • Coded representation of immersive media – Publication of the Technical Report on Architectures for Immersive Media
  • Genomic information representation – WG11 receives answers to the joint call for proposals on genomic annotations in conjunction with ISO TC 276/WG 5
  • Open font format – WG11 promotes Amendment of Open Font Format to the final stage
  • High efficiency coding and media delivery in heterogeneous environments – WG11 progresses Baseline Profile for MPEG-H 3D Audio
  • Multimedia content description interface – Conformance and Reference Software for Compact Descriptors for Video Analysis promoted to the final stage

Additional Important Activities at the 129th WG 11 (MPEG) meeting

The 129th WG 11 (MPEG) meeting was attended by more than 500 experts from 25 countries working on important activities including (i) a scene description for MPEG media, (ii) the integration of Video-based Point Cloud Compression (V-PCC) and Immersive Video (MIV), (iii) Video Coding for Machines (VCM), and (iv) a draft call for proposals for MPEG-I Audio among others.

The corresponding press release of the 129th MPEG meeting can be found here: https://mpeg.chiariglione.org/meetings/129. This report focused on network-based media processing (NBMP), architectures of immersive media, compact descriptors for video analysis (CDVA), and an update about adaptive streaming formats (i.e., DASH and CMAF).

MPEG picture at Friday plenary; © Rob Koenen (Tiledmedia).

Coded representation of immersive media – WG11 promotes Network-Based Media Processing (NBMP) to the final stage

At its 129th meeting, MPEG promoted ISO/IEC 23090-8, Network-Based Media Processing (NBMP), to Final Draft International Standard (FDIS). The FDIS stage is the final vote before a document is officially adopted as an International Standard (IS). During the FDIS vote, publications and national bodies are only allowed to place a Yes/No vote and are no longer able to make any technical changes. However, project editors are able to fix typos and make other necessary editorial improvements.

What is NBMP? The NBMP standard defines a framework that allows content and service providers to describe, deploy, and control media processing for their content in the cloud by using libraries of pre-built 3rd party functions. The framework includes an abstraction layer to be deployed on top of existing commercial cloud platforms and is designed to be able to be integrated with 5G core and edge computing. The NBMP workflow manager is another essential part of the framework enabling the composition of multiple media processing tasks to process incoming media and metadata from a media source and to produce processed media streams and metadata that are ready for distribution to media sinks.

Why NBMP? With the increasing complexity and sophistication of media services and the incurred media processing, offloading complex media processing operations to the cloud/network is becoming critically important in order to keep receiver hardware simple and power consumption low.

Research aspects: NBMP reminds me a bit about what has been done in the past in MPEG-21, specifically Digital Item Adaptation (DIA) and Digital Item Processing (DIP). The main difference is that MPEG now targets APIs rather than pure metadata formats, which is a step forward in the right direction as APIs can be implemented and used right away. NBMP will be particularly interesting in the context of new networking approaches including, but not limited to, software-defined networking (SDN), information-centric networking (ICN), mobile edge computing (MEC), fog computing, and related aspects in the context of 5G.

Coded representation of immersive media – Publication of the Technical Report on Architectures for Immersive Media

At its 129th meeting, WG11 (MPEG) published an updated version of its technical report on architectures for immersive media. This technical report, which is the first part of the ISO/IEC 23090 (MPEG-I) suite of standards, introduces the different phases of MPEG-I standardization and gives an overview of the parts of the MPEG-I suite. It also documents use cases and defines architectural views on the compression and coded representation of elements of immersive experiences. Furthermore, it describes the coded representation of immersive media and the delivery of a full, individualized immersive media experience. MPEG-I enables scalable and efficient individual delivery as well as mass distribution while adjusting to the rendering capabilities of consumption devices. Finally, this technical report breaks down the elements that contribute to a fully immersive media experience and assigns quality requirements as well as quality and design objectives for those elements.

Research aspects: This technical report provides a kind of reference architecture for immersive media, which may help identify research areas and research questions to be addressed in this context.

Multimedia content description interface – Conformance and Reference Software for Compact Descriptors for Video Analysis promoted to the final stage

Managing and organizing the quickly increasing volume of video content is a challenge for many industry sectors, such as media and entertainment or surveillance. One example task is scalable instance search, i.e., finding content containing a specific object instance or location in a very large video database. This requires video descriptors that can be efficiently extracted, stored, and matched. Standardization enables extracting interoperable descriptors on different devices and using software from different providers so that only the compact descriptors instead of the much larger source videos can be exchanged for matching or querying. ISO/IEC 15938-15:2019 – the MPEG Compact Descriptors for Video Analysis (CDVA) standard – defines such descriptors. CDVA includes highly efficient descriptor components using features resulting from a Deep Neural Network (DNN) and uses predictive coding over video segments. The standard is being adopted by the industry. At its 129th meeting, WG11 (MPEG) has finalized the conformance guidelines and reference software. The software provides the functionality to extract, match, and index CDVA descriptors. For easy deployment, the reference software is also provided as Docker containers.

Research aspects: The availability of reference software helps to conduct reproducible research (i.e., reference software is typically publicly available for free) and the Docker container even further contributes to this aspect.

DASH and CMAF

The 4th edition of DASH has already been published and is available as ISO/IEC 23009-1:2019. Similar to previous iterations, MPEG’s goal was to make the newest edition of DASH publicly available for free, with the goal of industry-wide adoption and adaptation. During the most recent MPEG meeting, we worked towards implementing the first amendment which will include additional (i) CMAF support and (ii) event processing models with minor updates; these amendments are currently in draft and will be finalized at the 130th MPEG meeting in Alpbach, Austria. An overview of all DASH standards and updates are depicted in the figure below:

ISO/IEC 23009-8 or “session-based DASH operations” is the newest variation of MPEG-DASH. The goal of this part of DASH is to allow customization during certain times of a DASH session while maintaining the underlying media presentation description (MPD) for all other sessions. Thus, MPDs should be cacheable within content distribution networks (CDNs) while additional information should be customizable on a per session basis within a newly added session-based description (SBD). It is understood that the SBD should have an efficient representation to avoid file size issues and it should not duplicate information typically found in the MPD.

The 2nd edition of the CMAF standard (ISO/IEC 23000-19) will be available soon (currently under FDIS ballot) and MPEG is currently reviewing additional tools in the so-called ‘technologies under considerations’ document. Therefore, amendments were drafted for additional HEVC media profiles and exploration activities on the storage and archiving of CMAF contents.

The next meeting will bring MPEG back to Austria (for the 4th time) and will be hosted in Alpbach, Tyrol. For more information about the upcoming 130th MPEG meeting click here.

Click here for more information about MPEG meetings and their developments

JPEG Column: 86th JPEG Meeting in Sydney, Australia

The 86th JPEG meeting was held in Sydney, Australia.

Among the different activities that took place, the JPEG Committee issued a Call for Evidence on learning-based image coding solutions. This call results from the success of the  explorations studies recently carried out by the JPEG Committee, and honours the pioneering work of JPEG issuing the first image coding standard more than 25 years ago.

In addition, a First Call for Evidence on Point Cloud Coding was issued in the framework of JPEG Pleno. Furthermore, an updated version of the JPEG Pleno reference software and a JPEG XL open source implementation have been released, while JPEG XS continues the development of raw-Bayer image sensor compression.

JPEG Plenary at the 86th meeting.

The 86th JPEG meeting had the following highlights:

  • JPEG AI issues a call for evidence on machine learning based image coding solutions
  • JPEG Pleno issues call for evidence on Point Cloud coding
  • JPEG XL verification test reveal competitive performance with commonly used image coding solutions 
  • JPEG Systems submitted final texts for Privacy & Security
  • JPEG XS announces new coding tools optimised for compression of raw-Bayer image sensor data

JPEG AI

The JPEG Committee launched a learning-based image coding activity more than a year ago, also referred as JPEG AI. This activity aims to find evidence for image coding technologies that offer substantially better compression efficiency when compared to conventional approaches but relying on models exploiting a large image database.

A Call for Evidence (CfE) has been issued as outcome of the 86th JPEG meeting, Sydney, Australia as a first formal step to consider standardisation of such approaches in image compression. The CfE is organised in coordination with the IEEE MMSP 2020 Grand Challenge on Learning-based Image Coding Challenge and will use the same content, evaluation methodologies and deadlines.

JPEG Pleno

JPEG Pleno is working toward the integration of various modalities of plenoptic content under a single framework and in a seamless manner. Efficient and powerful point cloud representation is a key feature within this vision.  Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 86th JPEG Meeting, the JPEG Committee released a First Call for Evidence on JPEG Pleno Point Cloud Coding to be integrated in the JPEG Pleno framework.  This Call for Evidence focuses specifically on point cloud coding solutions that support scalability and random access of decoded point clouds.

Furthermore, a Reference Software implementation of the JPEG Pleno file format (Part 1) and light field coding technology (Part 2) is made publicly available as open source on the JPEG Gitlab repository (https://gitlab.com/wg1). The JPEG Pleno Reference Software is planned to become an International Standard as Part 4 of JPEG Pleno by the end of 2020.

JPEG XL

The JPEG XL Image Coding System (ISO/IEC 18181) has produced an open source reference implementation available on the JPEG Gitlab repository (https://gitlab.com/wg1/jpeg-xl). The software is available under Apache 2, which includes a royalty-free patent grant. Speed tests indicate the multithreaded encoder and decoder outperforms libjpeg-turbo. 

Independent subjective and objective evaluation experiments have indicated competitive performance with commonly used image coding solutions while offering new functionalities such as lossless transcoding from legacy JPEG format to JPEG XL. The standardisation process has reached the Draft International Standard stage.

JPEG exploration into Media Blockchain

Fake news, copyright violations, media forensics, privacy and security are emerging challenges in digital media. JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address these challenges in transparent and trustable media transactions. However, blockchain and DLT need to be integrated efficiently with a widely adopted standard to ensure broad interoperability of protected images. Therefore, the JPEG committee has organised several workshops to engage with the industry and help to identify use cases and requirements that will drive the standardisation process.

During its Sydney meeting, the committee organised an Open Discussion Session on Media Blockchain and invited local stakeholders to take part in an interactive discussion. The discussion focused on media blockchain and related application areas including, media and document provenance, smart contracts, governance, legal understanding and privacy. The presentations of this session are available on the JPEG website. To keep informed and to get involved in this activity, interested parties are invited to register to the ad hoc group’s mailing list.

JPEG Systems

JPEG Systems & Integration submitted final texts for ISO/IEC 19566-4 (Privacy & Security), ISO/IEC 24800-2 (JPSearch), and ISO/IEC 15444-16 2nd edition (JPEG 2000-in-HEIF) for publication.  Amendments to add new capabilities for JUMBF and JPEG 360 reached Committee Draft stage and will be reviewed and balloted by national bodies.

The JPEG Privacy & Security release is timely as consumers are increasingly aware and concerned about the need to protect privacy in imaging applications.  The JPEG 2000-in-HEIF enables embedding JPEG 2000 images in the HEIF file format.  The updated JUMBF provides a more generic means to embed images and other media within JPEG files to enable richer image experiences.  The updated JPEG 360 adds stereoscopic 360 images, and a method to accelerate the rendering of a region-of-interest within an image in order to reduce the latency experienced by users.  JPEG Systems & Integrations JLINK, which elaborates the relationships of the embedded media within the file, created updated use cases to refine the requirements, and continued technical discussions on implementation.

JPEG XS

The JPEG committee is pleased to announce the specification of new coding tools optimised for compression of raw-Bayer image sensor data. The JPEG XS project aims at the standardisation of a visually lossless, low-latency and lightweight compression scheme that can be used as a mezzanine codec in various markets. Video transport over professional video links, real-time video storage in and outside of cameras, and data compression onboard of autonomous cars are among the targeted use cases for raw-Bayer image sensor compression. Amendment of the Core Coding System, together with new profiles targeting raw-Bayer image applications are ongoing and expected to be published by the end of 2020.

Final Quote

“The efforts to find new and improved solutions in image compression have led JPEG to explore new opportunities relying on machine learning for coding. After rigorous analysis in form of explorations during the last 12 months, JPEG believes that it is time to formally initiate a standardisation process, and consequently, has issued a call for evidence for image compression based on machine learning.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

86th JPEG meeting social event in Sydney, Australia.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

More information about JPEG and its work is available at www.jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans (pr@jpeg.org) of the JPEG Communication Subgroup. If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list on http://jpeg-news-list.jpeg.org.  

Future JPEG meetings are planned as follows:

  • No 87, Erlangen, Germany, April 25 to 30, 2020 (Cancelled because of Covid-19 outbreak; Replaced by online meetings.)
  • No 88, Geneva, Switzerland, July 4 to 10, 2020