JPEG Column: 94th JPEG Meeting

Author: Antonio Pinheiro
Affiliation: Instituto de Telecomunicacoes (IT) and Universidade da Beira Interior (UBI), Portugal

IEC, ISO and ITU issue a call for proposals for joint standardization of image coding based on machine learning

The 94th JPEG meeting was held online from 17 to 21 January 2022. A major milestone has been reached at this meeting with the release of the final call for proposals under the JPEG AI project. This standard aims at the joint standardization of the first image coding standard based on machine learning by the IEC, ISO and ITU, offering a single stream, compact compressed domain representation, targeting both human visualization with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality and effective performance for image processing and computer vision tasks.

The JPEG AI call for proposals was issued in parallel with a call for proposals for point cloud coding based on machine learning. The latter will be conducted in parallel with JPEG AI standardization.

The 94th JPEG meeting had the following highlights:

  • JPEG AI Call for Proposals;
  • JPEG JPEG Pleno Point Cloud Call for Proposals;
  • JPEG Pleno Light Fields quality assessment;
  • JPEG AIC near perceptual lossless quality assessment;
  • JPEG Systems;
  • JPEG Fake Media draft Call for Proposals;
  • JPEG NFT exploration;
  • JPEG XS;
  • JPEG DNA explorations.

The following provides an overview of the major achievements carried out during the 94th JPEG meeting.


JPEG AI targets a wide range of applications such as cloud storage, visual surveillance, autonomous vehicles and devices, image collection storage and management, live monitoring of visual data and media distribution. The main objective is to design a coding solution that offers significant compression efficiency improvement over coding standards in common use at equivalent subjective quality and an effective compressed domain processing for machine learning-based image processing and computer vision tasks. Other key requirements include hardware/software implementation-friendly encoding and decoding, support for 8- and 10-bit depth, efficient coding of images with text and graphics and progressive decoding.

During the 94th JPEG meeting, several activities toward a JPEG AI learning-based coding standard have occurred, notably the release of the Final Call for Proposals for JPEG AI, consolidated with the definition of the Use Cases and Requirements and the Common Training and Test Conditions to assure a fair and complete evaluation of the future proposals.

The final JPEG AI Call for Proposals marks an important milestone being the first time that contributions are solicited towards a learning-based image coding solution. The JPEG AI proposals’ registration deadline is 25 February 2022. There are three main phases for proponents to submit materials, namely, on 10th March for the proposed decoder implementation with some fixed coding model, on 2nd May for the submission of proposals’ bitstreams and decoded images and/or labels for the test datasets, and on 18th July, for the submission of source code for the encoder, decoder, training procedure and the proposal description. The presentation and discussion of the JPEG AI proposals will occur during the 96th JPEG meeting. JPEG AI is a joint standardization project between IEC, ISO and ITU.

JPEG AI framework

JPEG Pleno Point Cloud Coding

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature of this vision. Point cloud data supports a wide range of applications for human and machine consumption including metaverse, autonomous driving, computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 94th JPEG meeting, the JPEG Committee released a final Call for Proposals on JPEG Pleno Point Cloud Coding. This call addresses learning-based coding technologies for point cloud content and associated attributes with emphasis on both human visualization and decompressed/reconstructed domain 3D processing and computer vision with competitive compression efficiency compared to point cloud coding standards in common use, with the goal of supporting a royalty-free baseline. This Call was released in conjunction with new releases of the JPEG Pleno Point Cloud Use Cases and Requirements and the JPEG Pleno Point Cloud Common Training and Test Conditions. Interested parties are invited to register for this Call by the deadline of the 31st of March 2022.

JPEG Pleno Light Field

Besides defining coding standards, JPEG Pleno is planning for the creation of quality assessment standards, i.e. defining a framework including subjective quality assessment protocols and objective quality assessment measures for lossy decoded data of plenoptic modalities in the context of multiple use cases. The first phase of this effort will address the light field modality and should build on the light field quality assessment tools developed by JPEG in recent years. Future activities will focus on holographic and point cloud modalities, for both of which also coding related standardization efforts have been initiated.


During the 94th JPEG Meeting, the first version of the use cases and requirements document was released under the Image Quality Assessment activity. The standardization process was also defined, and the process will be carried out in two phases: during Stage I, a subjective methodology for the assessment of images with visual quality in the range from high quality to near-visually lossless will be standardized, following a collaborative process; successively, in Stage II, an objective image quality metric will be standardized, by means of a competitive process. A tentative timeline has also been planned with a call for contributions for subjective quality assessment methodologies to be released in July 2022, and a call for proposals for an objective quality metric planned in July 2023.

JPEG Systems

JPEG Systems produced the FDIS text for JLINK (ISO/IEC 19566-7), which allows the storage of multiple images inside JPEG files and the interactive navigation between them. This enables features like virtual museum tours, real estate visits, hotspot zoom into other images and many others. For JPEG Snack, the Committee produced the DIS text of ISO/IEC 19566-8, which allows storing multiple images for self-running multimedia experiences like animated image sequences and moving image overlays. Both texts are submitted for respective balloting. For JUMBF (ISO/IEC 19566-5, JPEG Universal Metadata Box Format), a second edition was initiated which combines the first edition and two amendments. Actual extensions are the support of CBOR (Concise Binary Object Representation) and private content types. In addition, JPEG Systems started an activity on a technical report for JPEG extensions mechanisms to facilitate forwards and backwards compatibility under ISO/IEC 19566-9. This technical report gives guidelines for the design of future JPEG standards and summarizes existing design mechanisms.

JPEG Fake Media

At its 94th meeting, the JPEG Committee released a Draft Call for Proposals for JPEG Fake Media and associated Use Cases and Requirements on JPEG Fake Media. These documents are the result of the work performed by the JPEG Fake Media exploration. The scope of JPEG Fake Media is the creation of a standard that can facilitate secure and reliable annotation of media asset creation and modifications. The standard shall address use cases that are both in good faith and those with malicious intent. The Committee targets the following timeline for the next steps in the standardization process:

  • April 2022: issue Final Call for Proposals
  • October 2022: evaluation of proposals
  • January 2023: first Working Draft (WD)
  • January 2024: Draft International Standard (DIS)
  • October 2024: International Standard (IS)

The JPEG Committee welcomes feedback on the JPEG Fake Media documents and invites interested experts to join the JPEG Fake Media AhG mailing list to get involved in this standardization activity.


The Ad hoc Group (AhG) on NFT resumed its exploratory work on the role of JPEG in the NFT ecosystem during the 94th JPEG meeting. Three use cases and four essential requirements were selected. The use cases include the usage of NFT for JPEG-based digital art, NFT for collectable JPEGs, and NFT for JPEG micro-licensing. The following categories of critical requirements are under consideration: metadata descriptions, metadata embedding and referencing; authentication and integrity; and the format for registering media assets. As a result, the JPEG Committee published an output document titled JPEG NFT Use Cases and Requirements. Additionally, the third JPEG NFT and Fake Media Workshop proceedings were published, and arrangements were made to hold another combined workshop between the JPEG NFT and JPEG Fake Media groups.


At the 94th JPEG meeting a new revision of the Use Cases and Requirements for JPEG XS document was produced, as version 3.1, to clarify and improve the requirements of a frame buffer. In addition, the JPEG Committee reports that the second editions of Part 1 (Core coding system), Part 2 (Profiles and buffer models), and Part 3 (Transport and container formats) have been approved and are now scheduled for publication as International Standards. Lastly, the DAM text for Amendment 1 to JPEG XS Part 2, which contains the additional High420.12 profile and a new sublevel at 4 bpp, is ready and will be sent to final balloting for approval.


JPEG XL Part 4 (Reference software) has proceeded to the FDIS stage. Work continued on the second edition of Part 1 (Core coding system). Core experiments were defined to investigate the numerical stability of the edge-preserving filter and fixed-point implementations. Both Part 1 (core coding system) and Part 2 (file format) are now published as IS, and preliminary support has been implemented in major web browsers, image viewing and editing software. Consequently, JPEG XL is now ready for wide-scale adoption.


The JPEG Committee has continued its exploration of the coding of images in quaternary representations, as is particularly suitable for DNA storage. The scope of JPEG DNA is the creation of a standard for efficient coding of images that considers biochemical constraints and offers robustness to noise introduced by the different stages of the storage process that is based on DNA synthetic polymers. A new version of the JPEG DNA overview document was issued and is now publicly available. It was decided to continue this exploration by validating and extending the JPEG DNA experimentation software to simulate an end-to-end image storage pipeline using DNA for future exploration experiments including biochemical noise simulation. During the 94th JPEG meeting, the JPEG DNA committee initiate a new document describing the Common Test Conditions that should be used to evaluate different aspects of image coding for storage on DNA support. It was also decided to prepare an outreach video to explain DNA coding as well as organize the 6th workshop on JPEG DNA with emphasis on the biochemical process noise simulators. Interested parties are invited to consider joining the effort by registering on the mailing list of JPEG DNA AhG.

Final Quote

“JPEG marks a historical milestone with the parallel release of two calls for proposals for learning based coding of images and point clouds,” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Upcoming JPEG meetings are planned as follows:

  • No 95, will be held online during 25-29 April 2022
Bookmark the permalink.