Multidisciplinary Column: Lessons Learned from a Multidisciplinary Hands-on Course on Interfaces for Inclusive Music Making

Author: Jochen Huber
Editors: Cynthia C. S. Liem, Jochen Huber

This short article reports on lessons learned from a multidisciplinary hands-on course that I co-taught in the academic winter term 2021/2022. Over the course of the term, I co-advised a group of 4 students who explored designing interfaces for Musiklusion [1], a project focused on inclusive music making using digital tools. Inclusive participation in music making processes is a topic home to the Multimedia community, as well as many neighbouring disciplines (see e.g. [2,3]). In the following, I briefly detail the curriculum, describe project Musiklusion, outline challenges and report on the course outcome. I conclude by summarizing a set of personal observations from the course—albeit anecdotal—that could be helpful for fellow teachers who wish to design a hands-on course with inclusive design sessions.

When I rejoined academia in 2020, I got the unique possibility to take part in teaching activities pertaining to, i.a., human-centered multimedia within a master’s curriculum on Human Factors at Furtwangen University. Within this 2-year master’s programme, one of the major mandatory courses is a 4-month hands-on course on Human Factors Design. I co-teach this course jointly with 3 other colleagues from my department. We expose students to multi-disciplinary research questions which they must investigate empirically in groups of 4-6. They have to come up with tangible results, e.g. a prototype or qualitative and quantitative data as empirical evidence.

Last term, each of us docents advised one group of students. Each group was also assigned an external partner to help ground the work and embed it into a real-world use case. The group of students I had the pleasure to work with partnered with Musiklusion’s project team. Musiklusion is an inclusive project focused on accessible music making with digital tools for people with so-called disabilities. They work and make music alongside people without any disabilities. These disabilities pertain e.g. to cognitive disabilities and impairments of motor skills with conditions continuing to progress. Movement, gestures and, eventually tasks, that can be performed today (e.g. being able to move one’s upper body) cannot be taken for granted in the future. Thus, as an overarching research agenda for the course project, the group of students explored the design and implementation of digital interfaces that enable people with cognitive and/or motor impairments to actively participate in music making processes and possibly sustain their participation in the long run depending on their physical abilities.

Figure 1. Current line-up of instruments of Project Musiklusion (source: Musiklusion feature with Tabea Booz & Sharon)

Project Musiklusion is spearheaded by musician and designer Andreas Brand [4], partnering with Lebenshilfe Tuttlingen [5]. The German Lebenshilfe is a nation-wide charitable association for people with so-called disabilities. Musiklusion’s project team makes two salient contributions: (i) orchestrating off-the-shelf instruments such that they are “programmable” and (ii) designing, developing and implementing digital interfaces that enable people with so-called disabilities to make music using said instruments. The project’s current line-up of instruments (cf. Figure 1) comprises a Disklavier with a Midi port and an enhanced drum set with drivers and mechanical actuators [6]. Both instruments can be controlled using MAX/MSP through OSC. Hence tools like TouchOSC [7] can be leveraged to design 2D widget-based graphical user interfaces to control each instrument. While a musician with impaired motor skills in the upper body might not be able to play individual notes using a touch interface or the actual Disklavier for instance, digital interfaces and widgets can be used to vary e.g. pitch or pace of themes.

With sustainable use of the above instruments in mind, the group of students aimed to explore alternative input modalities that could be used redundantly depending on a musician’s motor skills. They conducted weekly sessions with project members of Musiklusion over the course of about 2.5 months. Most of the project members use a motorized wheelchair and have limited upper body movement. Each session ran from 1 to 3 hours, depending on availability of project members and typically 2-5 members were present. The sessions took place at Lebenshilfe Tuttlingen, where the instruments were based at and used on daily basis. Based on in-situ observations and conversations, the group of students derived requirements and user needs to inform interface designs. They also led weekly co-design sessions where they prototyped both interfaces and interactions and tried them out with project members, respectively. Reporting on the actual iterative design sessions, the employed methodology (cf. [8,9]), as well as data gathered is beyond this short article and should be presented at a proper venue focusing on human-centred multimedia. Yet, to provide a glimpse on to the results: the group of students came up with a set of 4 different interfaces that cater to individual abilities and can be used redundantly with both the Disklavier and the drum kit. They designed (a) body-based interactions that can be employed while sitting in a motorized wheelchair, (b) motion-based interactions that leverage accelerometer and gyroscope data of e.g. a mobile phone held in hand or strapped to an upper arm, (c) an interface that leverages face mimics, relying on face tracking and (d) an eye-tracking interface that leverages eye movement for interaction. At the end of the course, and amidst the corona pandemic, these interfaces were used to enable the Musiklusion project members to team up with artists and singers Tabea Booz and Sharon to produce a music video remotely. The music video is available at and showcases the interfaces in actual productive use.

In the following, I enumerate personal lessons learned as an advisor and course instructor. Although these observations only steam from a single term and single group of students, I still find them worthwhile to share with the community.

  • Grounding of course topic is key. Teaming up with an external partner who provides a real-world use case had a tremendous impact on how the project went. The course could have also taken place without involving Musiklusion’s project members and actual instruments—designs and implementations would then have suffered from a low external validity. Furthermore, this would have rendered conduction of co-design sessions impossible.
  • Project work must be meaningful and possibly impactful. The real-world grounding of the project work and therefore also pressure to deliver progress to Musiklusion’s project members kept students extrinsically motivated. However, I observed students being engaged on a very high level and going above and beyond to deliver constantly improved prototypes. From conversations I had, I felt that both meaningfulness of their work and the impact they had motivated them intrinsically.
  • Course specifications should be tailored towards interests to acquire skills of course members. It might seem obvious (cf. [10]), but this course made me again realize how important it is to cater to the interest of students in acquiring new skills and match their interest to course specifications (cite Teaching college). The outcome of this project would have been entirely different, if students were not interested in learning how to build, deliver and test-drive prototypes iteratively at a high pace. This certainly also served as an additional intrinsic motivation.

In conclusion, teaching this course was a unique experience for me, as well as for the student members involved in the course work. It was certainly not my first hands-on course that I had taught. Also, hands-on course work is home to many HCI curricula across the globe. But I hope that this anecdotal report further inspires fellow teachers to partner with (charitable) organizations to co-teach modules and have them sponsor real-world use cases that motivate students both extrinsically and intrinsically.


I want to extend special thanks to participating students Selina Layer, Laura Moosmann, Marvin Shopp and Tobias Wirth, as well as Andreas Brand, Musiklusion project members and Lebenshilfe Tuttlingen.


[1] Musiklusion Project Webpage. Last accessed: June 28, 2022.

[2] Hornof A, Sato L. (2004). EyeMusic: making music with the eyes. In: Proceedings of the 2004 conference on New interfaces for musical expression, pp 185–188.

[3] Petry, B., Illandara, T., & Nanayakkara, S. (2016, November). MuSS-bits: sensor-display blocks for deaf people to explore musical sounds. In Proceedings of the 28th Australian Conference on Computer-Human Interaction(pp. 72-80).

[4] Personal webpage of Andreas Brand. Last accessed: June 28, 2022.

[5] Lebenshilfe Tuttlingen. Last accessed: June 28, 2022.

[6] Musiklusion Drum Set. Last accessed: June 28, 2022.

[7] TouchOSC. Last accessed: June 28, 2022.

[8] Veytizou J, Magnier C, Villeneuve F, Thomann G. (2012). Integrating the human factors characterization of disabled users in a design method. Application to an interface for playing acoustic music. Association for the Advancement of Modelling and Simulation Techniques in Enterprises 73:173.

[9] Gehlhaar R, Rodrigues PM, Girão LM, Penha R. (2014). Instruments for everyone: Designing new means of musical expression for disabled creators. In: Technologies of inclusive well-being. Springer, pp 167–196.

[10] Eng, N. (2017). Teaching college: The ultimate guide to lecturing, presenting, and engaging students.

About the Column

The Multidisciplinary Column is edited by Cynthia C. S. Liem and Jochen Huber. Every other edition, we will feature an interview with a researcher performing multidisciplinary work, or a column of our own hand. For this edition, we feature a column by Jochen Huber.

Editor Biographies

Cynthia_Liem_2017Dr. Cynthia C. S. Liem is an Assistant Professor in the Multimedia Computing Group of Delft University of Technology, The Netherlands, and pianist of the Magma Duo. She initiated and co-coordinated the European research project PHENICX (2013-2016), focusing on technological enrichment of symphonic concert recordings with partners such as the Royal Concertgebouw Orchestra. Her research interests consider music and multimedia search and recommendation, and increasingly shift towards making people discover new interests and content which would not trivially be retrieved. Beyond her academic activities, Cynthia gained industrial experience at Bell Labs Netherlands, Philips Research and Google. She was a recipient of the Lucent Global Science and Google Anita Borg Europe Memorial scholarships, the Google European Doctoral Fellowship 2010 in Multimedia, and a finalist of the New Scientist Science Talent Award 2016 for young scientists committed to public outreach.

jochen_huberDr. Jochen Huber is Professor of Computer Science at Furtwangen University, Germany. Previously, he was a Senior User Experience Researcher with Synaptics and an SUTD-MIT postdoctoral fellow in the Fluid Interfaces Group at MIT Media Lab and the Augmented Human Lab at Singapore University of Technology and Design. He holds a Ph.D. in Computer Science and degrees in both Mathematics (Dipl.-Math.) and Computer Science (Dipl.-Inform.), all from Technische Universität Darmstadt, Germany. Jochen’s work is situated at the intersection of Human-Computer Interaction and Human Augmentation. He designs, implements and studies novel input technology in the areas of mobile, tangible & non-visual interaction, automotive UX and assistive augmentation. He has co-authored over 60 academic publications and regularly serves as program committee member in premier HCI and multimedia conferences. He was program co-chair of ACM TVX 2016 and Augmented Human 2015 and chaired tracks of ACM Multimedia, ACM Creativity and Cognition and ACM International Conference on Interface Surfaces and Spaces, as well as numerous workshops at ACM CHI and IUI. Further information can be found on his personal homepage:

Tagged . Bookmark the permalink.