About Antonio Pinheiro

Antonio Pinheiro received the B.E. degree in electrical engineering from the I.S.T. University of Lisbon, Portugal, in 1988, and the Ph.D. degree in Electronic Systems Engineering from University of Essex in 2002. Since 1988 he is a lecture at University da Beira Interior (UBI), Portugal. His current research interests are on image processing and computer vision domains, including Multimedia Quality, Multimedia Privacy, and also on Image Classification and Medical Image Analysis. He is the Communication chair and a Portuguese committee member of ISO/IEC JTC 1/SC 29/WG 1 (JPEG). He has been Portuguese representative of the European COST Actions 292 and IC1003 -€“ Qualinet, and currently he is Portuguese representative of IC1206, DE-ID - De-identification for privacy protection in multimedia content and BM1304, MYO-MRI - Applications of MR imaging and spectroscopy techniques in neuromuscular disease.

JPEG Column: 92nd JPEG Meeting

JPEG Committee explores NFT standardisation needs

The 92nd JPEG meeting was held online from 7 to 13 July 2021. This meeting has consolidated JPEG’s exploration on standardisation needs related to Non-Fungible Tokens (NFTs). Recently, there has been a growing interest in the use of NFTs in many applications, notably in the trade of digital art and collectables.

Other notable results of the 92nd JPEG meeting have been the release of an update to the Call for Proposals on JPEG Pleno Holography and an initiative to revisit opportunities for standardisation of image quality assessment methodologies and metrics.

The 92nd JPEG meeting had the following highlights:

  • JPEG NFT exploration;
  • JPEG Fake Media defines context, use cases and requirements;
  • JPEG Pleno Holography call for proposals;
  • JPEG AI prepare Call for Proposals;
  • JPEG AIC explores new quality models;
  • JPEG Systems;
  • JPEG XS;
  • JPEG XL;
  • JPEG DNA.

The following provides an overview of the major achievements of the 92nd JPEG meeting.

JPEG NFT exploration

Recently, Non-Fungible Tokens (NFTs) have garnered considerable interest. Numerous digital assets linked with NFTs are either encoded in existing JPEG formats or can be represented in JPEG-developed current and forthcoming representations. Additionally, various trust and security concerns have been raised about NFTs and the digital assets on which they rely. To better understand user requirements for media formats, the JPEG Committee has launched the JPEG NFT exploration initiative. The mission of JPEG NFT is to provide effective specifications that enable various applications that rely on NFTs applied to media assets. A JPEG NFT standard shall be secure, trustworthy, and eco-friendly, enabling an interoperable ecosystem based on NFTs within or across applications. The committee strives to engage stakeholders from diverse backgrounds, including the technical, legal, artistic, and end-user communities, to establish use cases and requirements. In this context, the first JPEG NFT Workshop was held on July 1st, 2021. The workshop’s presentations and video footage are now accessible on the JPEG website, and a second workshop will be held in the near future. JPEG encourages interested parties to frequently visit its website for the most up-to-date information and to subscribe to the mailing list of the JPEG NFT Ad Hoc Group (AhG) in order to participate in this effort.

JPEG Fake Media

The scope of the JPEG Fake Media exploration is to assess standardisation needs to facilitate secure and reliable annotation of media asset creation and modifications in good-faith usage scenarios as well as in those with malicious intent. At the 92nd meeting, the JPEG Committee released an updated version of the “JPEG Fake Media Context, Use Cases and Requirements” document. This new version includes an improved and extended set of requirements covering three main categories: media creation and modification descriptions, metadata embedding & referencing and authenticity verification. In addition, the document contains several improvements including an extended set of definitions covering key terminologies. The JPEG Committee welcomes feedback to the document and invites interested experts to join the JPEG Fake Media AhG mailing list to get involved in the discussion.

JPEG Pleno

Currently, a Call for Proposals is open for JPEG Pleno Holography, which is the first standardisation effort aspiring to provide a versatile solution for efficient compression of holograms for a wide range of applications such as holographic microscopy, tomography, interferometry, printing, and display, and their associated hologram types. Key desired functionalities include support for both lossy and lossless coding, scalability, random access, and integration within the JPEG Pleno system architecture, with the goal of supporting a royalty-free baseline. In support of this Call for Proposals, a Common Test Conditions document and accompanying software have been released, enabling elaborate stress testing from the rate-distortion, functionality and visual rendering quality perspectives. For the latter, numerical reconstruction software has been released enabling viewport rendering from holographic data. References to software and documentation can be found on the JPEG website.

JPEG Pleno Point Cloud continues to progress towards a Call for Proposals on learning-based point cloud coding solutions with the release at the 92nd JPEG meeting of an updated Use Cases and Requirements document. This document details how the JPEG Committee envisions learning-based point cloud coding solutions meeting the requirements of rapidly emerging use cases in this field. This document continues the focus on solutions supporting scalability and random access while detailing new requirements for 3D processing and computer vision tasks performed in the compressed domain to support emerging applications such as autonomous driving and robotics.

JPEG AI

JPEG AI scope is the creation of a learning-based image coding standard offering a single-stream, compact compressed domain representation, targeting both human visualisation with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality, and effective performance for image processing and computer vision tasks. At the 92nd JPEG meeting, several activities were carried out towards the launch of the final JPEG AI Call for Proposals. This has included improvements of the training and test conditions for learning-based image coding, especially in the areas of the JPEG AI training dataset, target bitrates, computation of quality metrics, subjective quality evaluation, and complexity assessment. A software package called the JPEG AI objective quality assessment framework, with a reference implementation of all objective quality metrics, has been made available. Moreover, the results of the JPEG AI exploration experiments for image processing and computer vision tasks defined at the previous 91st JPEG meeting were presented and discussed, including their impact on Common Test Conditions.

Moreover, the JPEG AI Use Cases and Requirements were refined with two new core requirements regarding reconstruction reproducibility and hardware platform independence. The second draft of the Call for Proposals was produced and the timeline of the JPEG AI work item was revised. It was decided that the final Call for Proposals will be issued as an outcome of the 94th JPEG Meeting. The deadline for expression of interest and registration is 5 February 2022 and the submission of bitstreams and decoded images for the test dataset are due on 30 April 2022.

JPEG AIC

Image quality assessment remains an essential component in the development of image coding technologies. A new activity has been initiated in the JPEG AIC framework to study the assessment of image coding quality, with particular attention to crowd-sourced subjective evaluation methodologies and image coding at fidelity targets relevant for end-user image delivery on the web and consumer-grade photo archival.

JPEG Systems

JUMBF (ISO/IEC 19566-5 AMD1) and JPEG 360 (ISO/IEC 19566-6 AMD1) are now published standards available through ISO. A request to create the second amendment of JUMBF (ISO/IEC 19566-5) has been produced; this amendment will further extend the functionality to cover use cases and requirements under development in the JPEG Fake Media exploration initiative. The Systems software efforts are progressing on the development of a file parser for most JPEG standards and will include support for metadata within JUMBF boxes. Interested parties are invited to subscribe to the mailing list of the JPEG Systems AhG in order to monitor and contribute to JPEG Systems activities.

JPEG XS

JPEG XS aims at the standardization of a visually lossless low-latency and lightweight compression that can be used as a mezzanine codec in various markets. With the second editions of Part 1 (core coding system), Part 2 (profiles and buffer models), and Part 3 (transport and container formats) under ballot to become International Standards, the work during this JPEG meeting went into the second edition of Part 4 (Conformance Testing) and Part 5 (Reference Software). The second edition primarily brings new coding and signalling capabilities to support raw Bayer sensor content, mathematically lossless coding of images with up to 12 bits per colour component sample, and 4:2:0-sampled image content. In addition, the JPEG Committee continued its initial exploration to study potential future improvements to JPEG XS, while still honouring its low-complexity and low-latency requirements. Among such improvements are better support for high dynamic range (HDR), better support for raw Bayer sensor content, and overall improved compression efficiency. The compression efficiency work also targets improved handling of computer-screen content and artificially-generated rendered content.

JPEG XL

JPEG XL aims at standardization for image coding that offers high compression efficiency, along with features desirable for web distribution and efficient compression of high-quality images. JPEG XL Part 3 (Conformance testing) has been promoted to the Committee Draft stage of the ISO/IEC approval process. New core experiments were defined to investigate hardware-based coding, in particular including fixed-point implementations. With preliminary support in major web browsers, image viewing and manipulation libraries and tools, JPEG XL is ready for wide-scale adoption.

JPEG DNA

The JPEG Committee has continued its exploration of the coding of images in quaternary representations, as is particularly suitable for DNA storage. Two new use cases were identified as well as the sequencing noise models and simulators to use for DNA digital storage. There was a successful presentation of the fourth workshop by the stakeholders, and a new version of the JPEG DNA overview document was issued and is now publicly available. It was decided to continue this exploration by organising the fifth workshop and conducting further outreach to stakeholders, as well as to continue improving the JPEG DNA overview document. Moreover, it was also decided to produce software to simulate an end-to-end image storage pipeline using DNA storage for future exploration experiments. Interested parties are invited to consider joining the effort by registering to the mailing list of JPEG DNA.

Final Quote

“The JPEG Committee is considering standardisation needs for timely and effective specifications that can best support the use of NFTs in applications where media assets can be represented with JPEG formats.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Upcoming JPEG meetings are planned as follows:

  • No 93, to be held online during 18-22 October 2021.
  • No 94, to be held online during 17-21 January 2022.

JPEG Column: 91st JPEG Meeting

JPEG Committee issues a Call for Proposals on Holography coding

The 91st JPEG meeting was held online from 19 to 23 April 2021. This meeting saw several activities relating to holographic coding, notably the release of the JPEG Pleno Holography Call for Proposals, consolidated with the definition of the use cases and requirements for holographic coding and common test conditions that will assure the evaluation of the future proposals.

Reconstructed hologram from B-com database (http://plenodb.jpeg.org/).

The 91st meeting was also marked by the start of a new exploration initiative on Non-Fungible Tokens (NFTs), due to the recent interest in this technology in a large number of applications and in particular in digital art. Since NFTs rely on decentralized networks and JPEG has been analysing the implications of Blockchains and distributed ledger technologies in imaging, it is a natural next step to explore how JPEG standardization can facilitate interoperability between applications that make use of NFTs.

The following presents an overview of the major achievements carried out during the 91st JPEG meeting.

The 91st JPEG meeting had the following highlights:

  • JPEG launches call for proposals for the first standard in holographic coding,
  • JPEG NFT,
  • JPEG Fake Media,
  • JPEG AI,
  • JPEG Systems,
  • JPEG XS,
  • JPEG XL,
  • JPEG DNA,
  • JPEG Reference Software.

JPEG launches call for proposals for the first standard in holographic coding

JPEG Pleno aims to provide a standard framework for representing new imaging modalities, such as light field, point cloud, and holographic content. JPEG Pleno Holography is the first standardization effort for a versatile solution to efficiently compress holograms for a wide range of applications ranging from holographic microscopy to tomography, interferometry, and printing and display, as well as their associated hologram types. Key functionalities include support for both lossy and lossless coding, scalability, random access, and integration within the JPEG Pleno system architecture, with the goal of supporting a royalty free baseline.

The final Call for Proposals (CfP) on JPEG Pleno Holography – a milestone in the roll-out of the JPEG Pleno framework – has been issued as the main result of the 91st JPEG meeting, Online, 19-23 April 2021. The deadline for expressions of interest and registration is 1 August 2021. Submissions to the Call for Proposals are due on 1 September 2021.

A second milestone reached at this meeting was the promotion to International Standard of JPEG Pleno Part 2: Light Field Coding (ISO/IEC 21794-2). This standard provides light field coding tools originating from either microlens cameras or camera arrays. Part 1 of this standard, which was promoted to International Standard earlier, provides the overall file format syntax supporting light field, holography and point cloud modalities.

During the 91st JPEG meeting, the JPEG Committee officially began an exciting phase of JPEG Pleno Point Cloud coding standardisation with a focus on learning-based point cloud coding.

The scope of the JPEG Pleno Point Cloud activity is the creation of a learning-based coding standard for point clouds and associated attributes, offering a single-stream, compact compressed domain representation, supporting advanced flexible data access functionalities. The JPEG Pleno Point Cloud standard targets both interactive human visualization, with significant compression efficiency over state of the art point cloud coding solutions commonly used at equivalent subjective quality, and also enables effective performance for 3D processing and computer vision tasks. The JPEG Committee expects the standard to support a royalty-free baseline.

The standard is envisioned to provide a number of unique benefits, including an efficient single point cloud representation for both humans and machines. The intent is to provide humans with the ability to visualise and interact with the point cloud geometry and attributes while providing machines the ability to perform 3D processing and computer vision tasks in the compressed domain, enabling lower complexity and higher accuracy through the use of compressed domain features extracted from the original instead of the lossily decoded point cloud.

JPEG NFT

Non-Fungible Tokens have been the focus of much attention in recent months. Several digitals assets that NFTs point to are either in existing JPEG formats or can be represented in current and emerging formats under development by the JPEG Committee. Furthermore, several trust and security issues have been raised regarding NFTs and the digital assets they rely on. Here again, JPEG Committee has a significant track record in security and trust in imaging applications. Building on this background, the JPEG Committee has launched a new exploration initiative around NFTs to better understand the needs in terms of imaging requirements and how existing as well as potential JPEG standards can help bring security and trust to NFTs in a wide range of applications and notably those that rely on contents that are represented in JPEG formats in still and animated pictures and 3D contents. The first steps in this initiative involve outreach to stakeholders in NFTs and its application and organization of a workshop to discuss challenges and current solutions in NFTs, notably in the context of applications relevant to the scope of the JPEG Standardization Committee. JPEG Committee invites interested parties to subscribe to the mailing list of the JPEG NFT exploration via http://listregistration.jpeg.org.

JPEG Fake Media

The JPEG Fake Media exploration activity continues its work to assess standardization needs to facilitate secure and reliable annotation of media asset creation and modifications in good faith usage scenarios as well as in those with malicious intent. At the 91st meeting, the JPEG Committee released an updated version of the “JPEG Fake Media Context, Use Cases and Requirements” document. This new version includes several refinements including an improved and coherent set of definitions covering key terminology. The requirements have been extended and reorganized into three main identified categories: media creation and modification descriptions, metadata embedding framework and authenticity verification framework. The presentations and video recordings of the 2nd Workshop on JPEG Fake Media are now available on the JPEG website. JPEG invites interested parties to regularly visit https://jpeg.org/jpegfakemedia for the latest information and subscribe to the mailing list via http://listregistration.jpeg.org.

JPEG AI

At the 91st meeting, the results of the JPEG AI exploration experiments for the image processing and computer vision tasks defined at the previous 90th meeting were presented and discussed. Based on the analysis of the results, the exploration experiments description was improved. This activity will allow the definition of a performance assessment framework to use in the learning-based image codecs latent representation in several visual analysis tasks, such as compressed domain image classification and compressed domain material and texture recognition. Moreover, the impact of such experiments on the current version of the Common Test Conditions (CTC) was discussed. 

Moreover, the draft of the Call for Proposals was analysed, notably regarding the training dataset and training procedures as well as the submission requirements. The timeline of the JPEG AI work item was discussed and it was agreed that the final Call for Proposals (CfP) will be issued as an outcome of the 93rd JPEG Meeting. The deadline for expression of interest and registration is 5 November 2021. Further, the submission of bitstreams and decoded images for the test dataset are due on 30 January 2022.

JPEG Systems

During the 91st meeting, the Draft International Standard (DIS) text of JLINK (ISO/IEC 19566-7) and Committee Draft (CD) text of JPEG Snack (ISO/IEC 19566-8) were completed and will be submitted for ballot. Amendments for JUMBF (ISO/IEC 19566-5 AMD1) and JPEG 360 (ISO/IEC 19566-6 AMD1) received a final review and are being released for publication. In addition, new extensions to JUMBF (ISO/IEC 19566-5) are under consideration to support rapidly emerging use cases related to content authenticity and integrity; updated use cases and requirements are being drafted. Finally, discussions have started to create awareness on how to interact with JUMBF boxes and the information they contain, without breaking integrity or interoperability. Interested parties are invited to subscribe to the mailing list of the JPEG Systems AHG in order to contribute to the above activities via http://listregistration.jpeg.org.

JPEG XS

The second editions of JPEG XS Part 1 (Core coding system) and Part 3 (Transport and container formats) were prepared for Final Draft International Standard (FDIS) balloting, with the intention of having both standards published by October 2021. The second editions integrate new coding and signalling capabilities to support RAW Bayer colour filter array (CFA) images, 4:2:0 sampled images and mathematically lossless coding of up to 12-bits per component. The associated profiles and buffer models are handled in Part 2, which is currently under DIS ballot. The focus now has shifted to work on the second editions of Part 4 (Conformance testing) and Part 5 (Reference software). Finally, the JPEG Committee defined a study to investigate future improvements to high dynamic range (HDR) and mathematically lossless compression capabilities, while still honouring the low-complexity and low-latency requirements. In particular, for RAW Bayer CFA content, the JPEG Committee will work on extensions of JPEG XS supporting lossless compression of CFA patterns at sample bit depths above 12 bits.

JPEG XL

The JPEG Committee has finalized JPEG XL Part 2 (File format), which is now at the FDIS stage. A Main profile has been specified in draft Amendment 1 to Part 1, which entered the draft amendment (DAM) stage of the approval process at the current meeting. The draft Main profile has two levels: Level 5 for end-user image delivery and Level 10 for generic use cases, including image authoring workflows. Now that the criteria for conformance have been determined, the JPEG Committee has defined new core experiments to define a set of test codestreams that provides full coverage of the coding tools. Part 4 (Reference software) is now at the DIS stage. With the first edition FDIS texts of both Part 1 and Part 2 now complete, JPEG XL is ready for wide adoption.

JPEG DNA

The JPEG Committee has continued its exploration of coding of images in quaternary representation, particularly suitable for DNA storage. After a successful third workshop presentation by stakeholders, two new use cases were identified along with a large number of new requirements, and a new version of the JPEG DNA overview document was issued and is now made publicly available. It was decided to continue this exploration by organizing the fourth workshop and conducting further outreach to stakeholders, as well as continuing with improving the JPEG DNA overview document.

Interested parties are invited to refer to the following URL and to consider joining the effort by registering to the mailing list of JPEG DNA here: https://jpeg.org/jpegdna/index.html.

JPEG Reference Software

The JPEG Committee is pleased to announce that its standard on the JPEG reference software, 2nd edition, reached the state of International Standard and will be publicly available from both ITU and ISO/IEC.

This standard, to appear as ITU-T T.873 | ISO/IEC 10918-7 (2nd Edition) provides reference implementations to the first JPEG standard, used daily throughout the world. The software included in this document guides vendors on how JPEG (ISO/IEC 10918-1) can be implemented and may serve as a baseline and starting point for JPEG
encoders or decoders.

This second edition updates the two reference implementations to their latest versions, fixing minor defects in the software.

Final Quote

“JPEG standards continue to be a motor of innovation and an enabler of new applications in imaging as witnessed by the release of the first standard for coding of holographic content.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No. 92, will be held online from 7 to 13 July 2021.
  • No 93, is planned to be held in Berlin, Germany during 16-22 October 2021.

JPEG Column: 90th JPEG Meeting

JPEG AI becomes a new work item of ISO/IEC

The 90th JPEG meeting was held online from 18 to 22 January 2021. This meeting was distinguished by very relevant activities, notably the new JPEG AI standardization project planning, and the analysis of the Call for Evidence on JPEG Pleno Point Cloud Coding.

The new JPEG AI Learning-based Image Coding System has become an official new work item registered under ISO/IEC 6048 and aims at providing compression efficiency in addition to image processing and computer visions tasks without the need for decompression.

The response to the Call for Evidence on JPEG Pleno Point Cloud Coding was a learning-based method that was found to offer state of the art compression efficiency.  Considering this response, the JPEG Pleno Point Cloud activity will analyse the possibility of preparing a future call for proposals on learning-based coding solutions that will also consider new functionalities, building on the relevant use cases already identified that require machine learning tasks processed in the compressed domain.

Meanwhile the new JPEG XL coding system has reached FDIS stage and it is ready for adoption. JPEG XL offers compression efficiency similar to the best state of the art in image coding, the best lossless compression performance, affordable low complexity and integration with the legacy JPEG image coding standard allowing a friendly transition between the two standards.

The new JPEG AI logo.

The 90th JPEG meeting had the following highlights:

  • JPEG AI,
  • JPEG Pleno Point Cloud response to the Call for Evidence,
  • JPEG XL Core Coding System reaches FDIS stage,
  • JPEG Fake Media exploration,
  • JPEG DNA continues the exploration on image coding suitable for DNA storage,
  • JPEG systems,
  • JPEG XS 2nd edition of Profiles reaches DIS stage.

JPEG AI

The scope of the JPEG AI is the creation of a learning-based image coding standard offering a single-stream, compact compressed domain representation, targeting both human visualization with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality, and effective performance for image processing and computer vision tasks, with the goal of supporting a royalty-free baseline.

JPEG AI has made several advances during the 90th technical meeting. During this meeting, the JPEG AI Use Cases and Requirements were discussed and collaboratively defined. Moreover, the JPEG AI vision and the overall system framework of an image compression solution with efficient compressed domain representation was defined. Following this approach, a set of exploration experiments were defined to assess the capabilities of the compressed representation generated by learning-based image codecs, considering some specific computer vision and image processing tasks.

Moreover, the performance assessment of the most popular objective quality metrics, using subjective scores obtained during the call for evidence were discussed, as well as anchors and some techniques to perform spatial prediction and entropy coding.

JPEG Pleno Point Cloud response to the Call for Evidence

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 90th JPEG meeting, the JPEG Committee reached an exciting major milestone and reviewed the results of its Final Call for Evidence on JPEG Pleno Point Cloud Coding. With an innovative Deep Learning based point cloud codec supporting scalability and random access submitted, the Call for Evidence results highlighted the emerging role of Deep Learning in point cloud representation and processing. Between the 90th and 91st meetings, the JPEG Committee will be refining the scope and direction of this activity in light of the results of the Call for Evidence.

JPEG XL Core Coding System reaches FDIS stage

The JPEG Committee has finalized JPEG XL Part 1 (Core Coding System), which is now at FDIS stage. The committee has defined new core experiments to determine appropriate profiles and levels for the codec, as well as appropriate criteria for defining conformance. With Part 1 complete, and Part 2 close to completion, JPEG XL is ready for evaluation and adoption by the market.

JPEG Fake Media exploration

The JPEG Committee initiated the JPEG Fake Media JPEG exploration study with the objective to create a standard that can facilitate secure and reliable annotation of media asset generation and modifications. The initiative aims to support usage scenarios that are in good faith as well as those with malicious intent. During the 90th JPEG meeting, the committee released a new version of the document entitled “JPEG Fake Media: Context Use Cases and Requirements” which is available on the JPEG website. A first workshop on the topic was organized on the 15th of December 2020. The program, presentations and a video recording of this workshop are available on the JPEG website. A second workshop will be organized around March 2021. More details will be made available soon on JPEG.org. JPEG invites interested parties to regularly visit https://jpeg.org/jpegfakemedia for the latest information and subscribe to the mailing list via http://listregistration.jpeg.org.

JPEG DNA continues the exploration on image coding suitable for DNA storage

The JPEG Committee continued its exploration for coding of images in quaternary representation, particularly suitable for DNA storage. After a second successful workshop presentation by stakeholders, additional requirements were identified, and a new version of the JPEG DNA overview document was issued and made publicly available. It was decided to continue this exploration by organising a third workshop and further outreach to stakeholders, as well as a proposal for an updated version of the JPEG overview document. Interested parties are invited to refer to the following URL and to consider joining the effort by registering to the mailing list of JPEG DNA here: https://jpeg.org/jpegdna/index.html.

JPEG Systems

JUMBF (ISO/IEC 19566-5) Amendment 1 draft review is complete and it is proceeding to international standard and subsequent publication; additional features to support new applications are under consideration.   Likewise, JPEG 360 (ISO/IEC 19566-5) Amendment 1 draft review is complete, and it is proceeding to international standard and subsequent publication.  The JLINK (ISO/IEC 19566-7) standard completed the committee draft review and is preparing a DIS study text ahead of the 91st meeting. The JPEG Snack (ISO/IEC 19566-8) will make a second working draft.  Interested parties can subscribe to the mailing list of the JPEG Systems AHG in order to contribute to the above activities.

JPEG XS 2nd edition of Profiles reaches DIS stage

The 2nd edition of Part 2 (Profiles) is now at the DIS stage and defines the required new profiles and levels to support the compression of raw Bayer content, mathematically lossless coding of up to 12-bit per component images, and 4:2:0 sampled image content. With the second editions of Parts 1, 2, and 3 completed, and the scheduled second editions of Part 4 (Conformance) and 5 (Reference Software), JPEG XS will soon have received a complete backwards-compatible revision of its entire suite of standards. Moreover, the committee defined a new exploration study to create new coding tools for improving the HDR and mathematically lossless compression capabilities, while still honoring the low-complexity and low-latency requirements.

Final Quote

“The official approval of JPEG AI by JPEG Parent Bodies ISO and IEC is a strong signal of support of this activity and its importance in the creation of AI-based imaging applications” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No 91, will be held online from April 19 to 23, 2021.
  • No 92, will be held online from July 7 to 13, 2021.

JPEG Column: 89th JPEG Meeting

JPEG initiates standardisation of image compression based on AI

The 89th JPEG meeting was held online from 5 to 9 October 2020.

During this meeting, multiple JPEG standardisation activities and explorations were discussed and progressed. Notably, the call for evidence on learning-based image coding was successfully completed and evidence was found that this technology promises several new functionalities while offering at the same time superior compression efficiency, beyond the state of the art. A new work item, JPEG AI, that will use learning-based image coding as core technology has been proposed, enlarging the already wide families of JPEG standards.

Figure 1. JPEG Families of standards and JPEG AI.

The 89th JPEG meeting had the following highlights:

  • JPEG AI call for evidence report
  • JPEG explores standardization needs to address fake media
  • JPEG Pleno Point Cloud Coding reviews the status of the call for evidence
  • JPEG Pleno Holography call for proposals timeline
  • JPEG DNA identifies use cases and requirements
  • JPEG XL standard defines the final specification
  • JPEG Systems JLINK reaches committee draft stage
  • JPEG XS 2nd Edition Parts 1, 2 and 3.

JPEG AI

At the 89th meeting, the submissions to the Call for Evidence on learning-based image coding were presented and discussed. Four submissions were received in response to the Call for Evidence. The results of the subjective evaluation of the submissions to the Call for Evidence were reported and discussed in detail by experts. It was agreed that there is strong evidence that learning-based image coding solutions can outperform the already defined anchors in terms of compression efficiency when compared to state-of-the-art conventional image coding architecture. Thus, it was decided to create a new standardisation activity for a JPEG AI on learning-based image coding system, that applies machine learning tools to achieve substantially better compression efficiency compared to current image coding systems, while offering unique features desirable for efficient distribution and consumption of images. This type of approach should allow obtaining an efficient compressed domain representation not only for visualisation but also for machine learning-based image processing and computer vision. JPEG AI releases to the public the results of the objective and subjective evaluations as well as the first version of common test conditions for assessing the performance of learning-based image coding systems.

JPEG explores standardization needs to address fake media

Recent advances in media modification, particularly deep learning-based approaches, can produce near realistic media content that is almost indistinguishable from authentic content. These developments open opportunities for production of new types of media contents that are useful for many creative industries but also increase risks of spread of maliciously modified content (e.g., ‘deepfake’) leading to social unrest, spreading of rumours or encouragement of hate crimes. The JPEG Committee is interested in exploring if a JPEG standard can facilitate a secure and reliable annotation of media modifications, both in good faith and malicious usage scenarios. 

The JPEG is currently discussing with stakeholders from academia, industry and other organisations to explore the use cases that will define a roadmap to identify the requirements leading to a potential standard. The Committee has received significant interest and has released a public document outlining the context, use cases and requirements. JPEG invites experts and technology users to actively participate in this activity and attend a workshop, to be held online in December 2020. Details on the activities of JPEG in this area can be found on the JPEG.org website. Interested parties are notably encouraged to register to the mailing list of the ad hoc group that has been set up to facilitate the discussions and coordination on this topic.

JPEG Pleno Point Cloud Coding

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 89th JPEG meeting, the JPEG Committee reviewed expressions of interest in the Final Call for Evidence on JPEG Pleno Point Cloud Coding. This Call for Evidence focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. Between its 89th and 90th meetings, the JPEG Committee will be actively promoting this activity and collecting submissions to participate in the Call for Evidence.

JPEG Pleno Holography

At the 89th meeting, the JPEG Committee released an updated draft of the Call for Proposals for JPEG Pleno Holography. A final Call for Proposals on JPEG Pleno Holography will be released in April 2021. JPEG Pleno Holography is seeking for compression solutions of holographic content. The scope of the activity is quite large and addresses diverse use cases such as holographic microscopy and tomography, but also holographic displays and printing. Current activities are centred around refining the objective and subjective quality assessment procedures. Interested parties are already invited at this stage to participate in these activities.

JPEG DNA

JPEG standards are used in storage and archival of digital pictures. This puts the JPEG Committee in a good position to address the challenges of DNA-based storage by proposing an efficient image coding format to create artificial DNA molecules. JPEG DNA has been established as an exploration activity within the JPEG Committee to study use cases, to identify requirements and to assess the state of the art in DNA storage for the purpose of image archival using DNA in order to launch a standardization activity. To this end, a first workshop was organised on 30 September 2020. Presentations made at the workshop are available from the following URL: http://ds.jpeg.org/proceedings/JPEG_DNA_1st_Workshop_Proceedings.zip.
At its 89th meeting, the JPEG Committee released a second version of a public document that describes its findings regarding storage of digital images using artificial DNA. In this framework, JPEG DNA ad hoc group was re-conducted in order to continue its activities to further refine the above-mentioned document and to organise a second workshop. Interested parties are invited to join this activity by participating in the AHG through the following URL: http://listregistration.jpeg.org.

JPEG XL

Final technical comments by national bodies have been addressed and incorporated into the JPEG XL specification (ISO/IEC 18181-1) and the reference implementation. A draft FDIS study text has been prepared and final validation experiments are planned.

JPEG Systems

The JLINK (ISO/IEC 19566-7) standard has reached the committee draft stage and will be made public.  The JPEG Committee invites technical feedback on the document which is available on the JPEG website.  Development of the JPEG Snack (IS0/IEC 19566-8) standard has begun to support the defined use cases and requirements.  Interested parties can subscribe to the mailing list of the JPEG Systems AHG in order to contribute to the above activities.

JPEG XS

The JPEG committee is finalizing its work on the 2nd Editions of JPEG-XS Part 1, Part 2 and Part 3. Part 1 defines new coding tools required to efficiently compress raw Bayer images. The observed quality gains of raw Bayer compression over compressing in the RGB domain can be as high as 5dB PSNR. Moreover, the second edition adds support for mathematically lossless image compression and allows compression of 4:2:0 sub-sampled images. Part 2 defines new profiles for such content. With the support for low-complexity high-quality compression of raw Bayer (or Color-Filtered Array) data, JPEG XS proves to also be an excellent compression scheme in the professional and consumer digital camera market, as well as in the machine vision and automotive industry.

Final Quote

“JPEG AI will be a new work item completing the collection of JPEG standards. JPEG AI relies on artificial intelligence to compress images. This standard not only will offer superior compression efficiency beyond the current state of the art but also will open new possibilities for vision tasks by machines and computational imaging for humans.” Said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No 90, will be held online from January 18 to 22, 2021.
  • N0 91, will be held online from April 19 to 23, 2021.

JPEG Column: 88th JPEG Meeting

The 88th JPEG meeting initially planned to be held in Geneva, Switzerland, was held online because of the Covid-19 outbreak.

JPEG experts organised a large number of sessions spread over day and night to allow the remote participation of multiple time zones. A very intense activity has resulted in multiple outputs and initiatives. In particular two new explorations activities were initiated. The first explores possible standardisation needs to address the growing emergence of fake media by introducing appropriate security features to prevent the misuse of media content. The latest, considers the use of DNA for media content archival.

Furthermore, JPEG has started the work on the new part 8 of the JPEG Systems standard, called JPEG snack, for interoperable rich image experiences, and it is holding two Call for Evidence, JPEG AI and JPEG Pleno Point cloud coding.

Despite travel restrictions, JPEG Committee has managed to keep up with the majority of its plans, defined prior to the COVID-19 outbreak. An overview of the different activities is represented in Fig. 1.

Figure 1 – JPEG Planned Timeline.

The 88th JPEG meeting had the following highlights:

  • JPEG explores standardization needs to address fake media
  • JPEG Pleno Point Cloud call for evidence
  • JPEG DNA – based archival of media content using DNA
  • JPEG AI call for evidence
  • JPEG XL standard evolves to a final specification
  • JPEG Systems part 8, named JPEG Snack progress
  • JPEG XS Part-1 2nd Edition first ballot.

JPEG explores standardization needs to address fake media

Recent advances in media manipulation, particularly deep learning-based approaches, can produce near realistic media content that is almost indistinguishable from authentic content to the human eye. These developments open opportunities for production of new types of media contents that are useful for the entertainment industry and other business usage, e.g., creation of special effects or artificial natural scene production with actors in the studio. However, this also leads to issues relating to fake media generation undermining the integrity of the media (e.g., deepfakes), copyright infringements and defamation to mention a few examples. Misuse of manipulated media can cause social unrest, spread rumours for political gain or encourage hate crimes. In this context, the term ‘fake’ is used here to refer to any manipulated media, independently of its ‘good’ or ‘bad’ intention.

In many application domains, fake media producers may want or may be required to declare the type of manipulations performed, in opposition to other situations where the intention is to ‘hide’ the mere existence of such manipulations. This is already leading various Governmental organizations to plan new legislation or companies (especially social media platforms or news outlets) to develop mechanisms that would clearly detect and annotate manipulated media contents when they are shared. While growing efforts are noticeable in developing technologies, there is a need to have a standard for the media/metadata format, e.g., a JPEG standard that facilitates a secure and reliable annotation of fake media, both in good faith and malicious usage scenarios. To better understand the fake media ecosystem and needs in terms of standardization, the JPEG Committee has initiated an in-depth analysis of fake media use cases, naturally independently of the “intentions”.     

More information on the initiative is available on the JPEG website. Interested parties are invited to join the above AHG through the following URL: http://listregistration.jpeg.org.

JPEG Pleno Point Cloud

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 88th JPEG meeting, the JPEG Committee released a Final Call for Evidence on JPEG Pleno Point Cloud Coding that focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. Between the 88th and 89th meetings, the JPEG Committee will be actively promoting this activity and collecting registrations to participate in the Call for Evidence.

JPEG DNA

In digital media information, notably images, the relevant representation symbols, e.g. quantized DCT coefficients, are expressed in bits (i.e., binary units) but they could be expressed in any other units, for example the DNA units which follow a 4-ary representation basis. This would mean that DNA molecules may be created with a specific DNA units’ configuration which stores some media representation symbols, e.g. the symbols of a JPEG image, thus leading to DNA-based media storage as a form of molecular data storage. JPEG standards have been used in storage and archival of digital pictures as well as moving images. While the legacy JPEG format is widely used for photo storage in SD cards, as well as archival of pictures by consumers,  JPEG 2000 as described in ISO/IEC 15444 is used in many archival applications, notably for preservation of cultural heritage in form of visual data as pictures and video in digital format. This puts the JPEG Committee in a unique position to address the challenges in DNA-based storage by creating a standard image representation and coding for such applications. To explore the latter, an AHG has been established. Interested parties are invited to join the above AHG through the following URL: http://listregistration.jpeg.org.

JPEG AI

At the 88th meeting, the submissions to the Call for Evidence were reported and analysed. Six submissions were received in response to the Call for Evidence made in coordination with the IEEE MMSP 2020 Challenge. The submissions along with the anchors were already evaluated using objective quality metrics. Following this initial process, subjective experiments have been designed to compare the performance of all submissions. Thus, during this meeting, the main focus of JPEG AI was on the presentation and discussion of the objective performance evaluation of all submissions as well as the definition of the methodology for the subjective evaluation that will be made next.

JPEG XL

The standardization of the JPEG XL image coding system is nearing completion. Final technical comments by national bodies have been received for the codestream (Part 1); the DIS has been approved and an FDIS text is under preparation. The container file format (Part 2) is progressing to the DIS stage. A white paper summarizing key features of JPEG XL is available at http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf.

JPEG Systems

ISO/IEC has approved the JPEG Snack initiative to deliver interoperable rich image experiences.  As a result, the JPEG Systems Part 8 (ISO/IEC 19566-8) has been created to define the file format construction and the metadata signalling and descriptions which enable animation with transition effects.  A Call for Participation and updated use cases and requirements have been issued. The CfP and the use cases and requirements documents are available at http://ds.jpeg.org/documents/wg1n87035-REQ-JPEG_Snack_Use_Cases_and_Requirements_v2_2.pdf and http://ds.jpeg.org/documents/wg1n88032-SI-CfP_JPEG_Snack.pdf respectively.

An updated working draft for the JLINK initiative was completed.  Interest parties are encouraged to review the JLINK Working Draft 3.0 available at http://ds.jpeg.org/documents/wg1n88031-SI-JLINK_WD_3_0.pdf

JPEG XS

The JPEG committee is pleased to announce a significant step in the standardization of an efficient Bayer image compression scheme, with the first ballot of the 2nd Edition of JPEG XS Part-1.

The new edition of this visually lossless low-latency and lightweight compression scheme now includes image sensor coding tools allowing efficient compression of Color-Filtered Array (CFA) data. This compression enables better quality and lower complexity than the corresponding compression in the RGB domain.  It can be used as a mezzanine codec in various markets such as real-time video storage in and outside of cameras, and data compression onboard autonomous cars.

Final Quote

“Fake Media has become a challenge with the wide-spread manipulated contents in the news. JPEG is determined to mitigate this problem by providing standards that can securely identify manipulated contents.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

Future JPEG meetings are planned as follows:

  • No 89, will be held online from October 5 to 9, 2020.

JPEG Column: 87th JPEG Meeting

The 87th JPEG meeting initially planned to be held in Erlangen, Germany, was held online from 25-30, April 2020 because of the Covid-19 outbreak. JPEG experts participated in a number of online meetings attempting to make them as effective as possible while considering participation from different time zones, ranging from Australia to California, U.S.A.

JPEG decided to proceed with a Second Call for Evidence on JPEG Pleno Point Cloud Coding and continued work to prepare for contributions to the previous Call for Evidence on Learning-based Image Coding Technologies (JPEG AI).

The 87th JPEG meeting had the following highlights:

  • JPEG Pleno Point Cloud Coding issues a Call for Evidence on coding solutions supporting scalability and random access of decoded point clouds.
  • JPEG AI defines evaluation methodologies of the Call for Evidence on machine learning based image coding solutions.
  • JPEG XL defines the file format compatible with existing formats. 
  • JPEG exploration on Media Blockchain releases use cases and requirements.
  • JPEG Systems releases a first version of JPEG Snack use cases and requirements.
  • JPEG XS announces significant improvement of the quality of raw-Bayer image sensor data compression.

JPEG Pleno Point Cloud

JPEG Pleno is working towards the integration of various modalities of plenoptic content under a single and seamless framework. Efficient and powerful point cloud representation is a key feature within this vision. Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 87th JPEG meeting, the JPEG Committee released a Second Call for Evidence on JPEG Pleno Point Cloud Coding that focuses specifically on point cloud coding solutions supporting scalability and random access of decoded point clouds. The Second Call for Evidence on JPEG Pleno Point Cloud Coding has a revised timeline reflecting changes in the activity due to the 2020 COVID-19 Pandemic. A Final Call for Evidence on JPEG Pleno Point Cloud Coding is planned to be released in July 2020.

JPEG AI

The main focus of JPEG AI was on the promotion and definition of the submission and evaluation methodologies of the Call for Evidence (in coordination with the IEEE MMSP 2020 Challenge) that was issued as outcome of the 86th JPEG meeting, Sydney, Australia.

JPEG XL

The File Format has been defined for JPEG XL (ISO/IEC 18181-1) codestream, metadata and extensions. The file format enables compatibility with ISOBMFF, JUMBF, XMP, Exif and other existing standards. Standardization has now reached the Committee Draft stage and the DIS ballot is ongoing. A white paper about JPEG XL’s features and tools was approved at this meeting and is available on the jpeg.org website.

JPEG exploration on Media Blockchain – Call for feedback on use cases and requirements

JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address many privacy and security related challenges in digital media applications. This includes digital rights management, privacy and security, integrity verification, and authenticity, that impacts society in several ways including the loss of income in the creative sector due to piracy, the spread of fake news, or evidence tampering for fraud purposes.

JPEG is exploring standardization needs related to media blockchain to ensure seamless interoperability and integration of blockchain technology with widely accepted media standards. In this context, the JPEG Committee announces a call for feedback from interested stakeholders on the first public release of the use cases and requirements document.

JPEG Systems initiates standardisation of JPEG Snack

Media “snacking”, the consumption of multimedia in short bursts (less than 15 minutes) has become globally popular. JPEG recognizes the need for standardizing how snack images are constructed to ensure interoperability. A first version of JPEG Snack use cases and requirements is now complete and publicly available on JPEG website inviting feedback from stakeholders.

JPEG made progress on a fundamental capability of the JPEG file structure with enhancements to JPEG Universal Metadata Box Format (JUMBF) to support embedding common file types; the DIS text for JUMBF Amendment 1 is ready for ballot. Likewise JPEG 360 Amendment 1 DIS text is ready for ballot; this amendment supports stereoscopic 360 degree images, accelerated rendering for regions-of-interest, and removes the XMP signature block from the metadata description.

JPEG XS – The JPEG committee is pleased to announce significant improvement of the quality of its upcoming Bayer compression.

Over the past year, an improvement of around 2dB has been observed for the new coding tools currently being developed for image sensor compression within JPEG XS. This visually lossless low-latency and lightweight compression scheme can be used as a mezzanine codec in various markets like real-time video storage inside and outside of cameras, and data compression onboard autonomous cars. Mathematically lossless capability is also investigated and encapsulation within MXF or SMPTE ST2110-22 is currently being finalized.

Final Quote

“JPEG is committed to the development of new standards that provide state of the art imaging solutions to the largest spectrum of stakeholders. During the 87th meeting, held online because of the Covid-19 pandemic, JPEG progressed well with its current and even launched new activities. Although some timelines had to be revisited, overall, no disruptions of the workplan have occurred.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

More information about JPEG and its work is available at jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans (pr@jpeg.org) of the JPEG Communication Subgroup.

If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list on http://jpeg-news-list.jpeg.org.  

Future JPEG meetings are planned as follows:

  • No 88, initially planned in Geneva, Switzerland, July 4 to 10, 2020, will be held online from July 7 to 10, 2020.

JPEG Column: 86th JPEG Meeting in Sydney, Australia

The 86th JPEG meeting was held in Sydney, Australia.

Among the different activities that took place, the JPEG Committee issued a Call for Evidence on learning-based image coding solutions. This call results from the success of the  explorations studies recently carried out by the JPEG Committee, and honours the pioneering work of JPEG issuing the first image coding standard more than 25 years ago.

In addition, a First Call for Evidence on Point Cloud Coding was issued in the framework of JPEG Pleno. Furthermore, an updated version of the JPEG Pleno reference software and a JPEG XL open source implementation have been released, while JPEG XS continues the development of raw-Bayer image sensor compression.

JPEG Plenary at the 86th meeting.

The 86th JPEG meeting had the following highlights:

  • JPEG AI issues a call for evidence on machine learning based image coding solutions
  • JPEG Pleno issues call for evidence on Point Cloud coding
  • JPEG XL verification test reveal competitive performance with commonly used image coding solutions 
  • JPEG Systems submitted final texts for Privacy & Security
  • JPEG XS announces new coding tools optimised for compression of raw-Bayer image sensor data

JPEG AI

The JPEG Committee launched a learning-based image coding activity more than a year ago, also referred as JPEG AI. This activity aims to find evidence for image coding technologies that offer substantially better compression efficiency when compared to conventional approaches but relying on models exploiting a large image database.

A Call for Evidence (CfE) has been issued as outcome of the 86th JPEG meeting, Sydney, Australia as a first formal step to consider standardisation of such approaches in image compression. The CfE is organised in coordination with the IEEE MMSP 2020 Grand Challenge on Learning-based Image Coding Challenge and will use the same content, evaluation methodologies and deadlines.

JPEG Pleno

JPEG Pleno is working toward the integration of various modalities of plenoptic content under a single framework and in a seamless manner. Efficient and powerful point cloud representation is a key feature within this vision.  Point cloud data supports a wide range of applications including computer-aided manufacturing, entertainment, cultural heritage preservation, scientific research and advanced sensing and analysis. During the 86th JPEG Meeting, the JPEG Committee released a First Call for Evidence on JPEG Pleno Point Cloud Coding to be integrated in the JPEG Pleno framework.  This Call for Evidence focuses specifically on point cloud coding solutions that support scalability and random access of decoded point clouds.

Furthermore, a Reference Software implementation of the JPEG Pleno file format (Part 1) and light field coding technology (Part 2) is made publicly available as open source on the JPEG Gitlab repository (https://gitlab.com/wg1). The JPEG Pleno Reference Software is planned to become an International Standard as Part 4 of JPEG Pleno by the end of 2020.

JPEG XL

The JPEG XL Image Coding System (ISO/IEC 18181) has produced an open source reference implementation available on the JPEG Gitlab repository (https://gitlab.com/wg1/jpeg-xl). The software is available under Apache 2, which includes a royalty-free patent grant. Speed tests indicate the multithreaded encoder and decoder outperforms libjpeg-turbo. 

Independent subjective and objective evaluation experiments have indicated competitive performance with commonly used image coding solutions while offering new functionalities such as lossless transcoding from legacy JPEG format to JPEG XL. The standardisation process has reached the Draft International Standard stage.

JPEG exploration into Media Blockchain

Fake news, copyright violations, media forensics, privacy and security are emerging challenges in digital media. JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address these challenges in transparent and trustable media transactions. However, blockchain and DLT need to be integrated efficiently with a widely adopted standard to ensure broad interoperability of protected images. Therefore, the JPEG committee has organised several workshops to engage with the industry and help to identify use cases and requirements that will drive the standardisation process.

During its Sydney meeting, the committee organised an Open Discussion Session on Media Blockchain and invited local stakeholders to take part in an interactive discussion. The discussion focused on media blockchain and related application areas including, media and document provenance, smart contracts, governance, legal understanding and privacy. The presentations of this session are available on the JPEG website. To keep informed and to get involved in this activity, interested parties are invited to register to the ad hoc group’s mailing list.

JPEG Systems

JPEG Systems & Integration submitted final texts for ISO/IEC 19566-4 (Privacy & Security), ISO/IEC 24800-2 (JPSearch), and ISO/IEC 15444-16 2nd edition (JPEG 2000-in-HEIF) for publication.  Amendments to add new capabilities for JUMBF and JPEG 360 reached Committee Draft stage and will be reviewed and balloted by national bodies.

The JPEG Privacy & Security release is timely as consumers are increasingly aware and concerned about the need to protect privacy in imaging applications.  The JPEG 2000-in-HEIF enables embedding JPEG 2000 images in the HEIF file format.  The updated JUMBF provides a more generic means to embed images and other media within JPEG files to enable richer image experiences.  The updated JPEG 360 adds stereoscopic 360 images, and a method to accelerate the rendering of a region-of-interest within an image in order to reduce the latency experienced by users.  JPEG Systems & Integrations JLINK, which elaborates the relationships of the embedded media within the file, created updated use cases to refine the requirements, and continued technical discussions on implementation.

JPEG XS

The JPEG committee is pleased to announce the specification of new coding tools optimised for compression of raw-Bayer image sensor data. The JPEG XS project aims at the standardisation of a visually lossless, low-latency and lightweight compression scheme that can be used as a mezzanine codec in various markets. Video transport over professional video links, real-time video storage in and outside of cameras, and data compression onboard of autonomous cars are among the targeted use cases for raw-Bayer image sensor compression. Amendment of the Core Coding System, together with new profiles targeting raw-Bayer image applications are ongoing and expected to be published by the end of 2020.

Final Quote

“The efforts to find new and improved solutions in image compression have led JPEG to explore new opportunities relying on machine learning for coding. After rigorous analysis in form of explorations during the last 12 months, JPEG believes that it is time to formally initiate a standardisation process, and consequently, has issued a call for evidence for image compression based on machine learning.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

86th JPEG meeting social event in Sydney, Australia.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

More information about JPEG and its work is available at www.jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans (pr@jpeg.org) of the JPEG Communication Subgroup. If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list on http://jpeg-news-list.jpeg.org.  

Future JPEG meetings are planned as follows:

  • No 87, Erlangen, Germany, April 25 to 30, 2020 (Cancelled because of Covid-19 outbreak; Replaced by online meetings.)
  • No 88, Geneva, Switzerland, July 4 to 10, 2020

JPEG Column: 85th JPEG Meeting in San Jose, California, U.S.A.

The 85th JPEG meeting was held in San Jose, CA, USA.

The meeting was distinguished by the Prime Time Engineering Emmy Award from the Academy of Television Arts & Sciences (ATAS) for the longevity of the first JPEG standard. Furthermore, a very successful workshop on JPEG emerging technologies was held at Microsoft premises in Silicon Valley with a broad participation from several companies working in imaging technologies. This workshop ended with the celebration of two JPEG committee experts, Thomas Richter and Ogawa Shigetaka, recognized by ISO outstanding contribution awards for the key roles they played in the development of JPEG XT standard.

The 85th JPEG meeting continued laying the groundwork for the continuous development of JPEG standards and exploration studies. In particular, the developments on new image coding standard JPEG XL,  the low latency and complexity standard JPEG XS, and the release of the JPEG Systems interoperable 360 image standard, together with the exploration studies on image compression using machine learning and on the use of blockchain and distributed ledger technologies for media applications.

The 85th JPEG meeting had the following highlights:

  • Prime Time Engineering Emmy award,
  • JPEG Emerging Technologies Workshop,
  • JPEG XL progresses towards a final specification,
  • JPEG AI evaluates machine learning based coding solutions,
  • JPEG exploration on Media Blockchain,
  • JPEG Systems interoperable 360 image standards released,
  • JPEG XS announces significant improvements of Bayer image sensor data compression.
JPEG Emerging Technologies Workshop.

Prime Time Engineering Emmy

The JPEG committee is honored to be the recipient of a prestigious Prime Time Engineering Award in 2019 by the US Academy of Television Arts & Sciences at the 71st Engineering Emmy Awards ceremony on the 23rd of October 2019 in Los Angeles, CA, USA. The first JPEG standard is known as a popular format in digital photography, used by hundreds of millions of users everywhere, in a wide range of applications including the world wide web, social media, photographic apparatus and smart cameras. The first part of the standard was published in 1992 and has grown to seven parts, with the latest, defining the reference software, published in 2019. This is a unique example of longevity in the fast moving information technologies and the Emmy award acknowledges this longevity and continuing influence over nearly three decades.

This is a well-deserved recognition not only for the Joint Photographic Experts Group committee members who started this standard under the auspices of ITU, ISO, IEC but also to all experts in the JPEG committee who continued to extend and maintain it, hence guaranteeing such a longevity.

JPEG convenor Touradj Ebrahimi during the Emmy acceptance speech.

According to Prof. Touradj Ebrahimi, Convenor of JPEG standardization committee, the longevity of JPEG is based on three very important factors: “The credibility by being developed under the auspices of three important standardization bodies, namely ITU, ISO and IEC, development by explicitly taking into account end users, and the choice of being royalty free”. Furthermore,  “JPEG defined not only a great technology but also it was a committee that first defined how standardization should take place in order to become successful”.

JPEG Emerging Technologies Workshop

At the 85th JPEG meeting in San Jose, CA, USA, JPEG organized the “JPEG Emerging Technologies Workshop” on the 5th of November 2019 to inform industry and academia active in the wider field of multimedia and in particular in imaging, about current JPEG Committee standardization activities and exploration studies. Leading JPEG experts shared highlights about some of the emerging JPEG technologies that could shape the future of imaging and multimedia, with the following program:

  • Welcome and Introduction (Touradj Ebrahimi);
  • JPEG XS – Lightweight compression; Transparent quality. (Antonin Descampe);
  • JPEG Pleno (Peter Schelkens);
  • JPEG XL – Next-generation Image Compression (Jan Wassenberg and Jon Sneyers);
  • High-Throughput JPEG 2000 – Big improvement to JPEG 2000 (Pierre-Anthony Lemieux);
  • JPEG Systems – The framework for future and legacy standards (Andy Kuzma);
  • JPEG Privacy and Security and Exploration on Media Blockchain Standardization Needs (Frederik Temmermans);
  • JPEG AI: Learning to Compress (João Ascenso)

This very successful workshop ended with a panel moderated by Fernando Pereira where different relevant media technology issues were discussed with a vibrant participation of the attendees.

Proceedings of the JPEG Emerging Technologies Workshop are available for download via the following link: https://jpeg.org/items/20191108_jpeg_emerging_technologies_workshop_proceedings.html

JPEG XL

The JPEG XL Image Coding System (ISO/IEC 18181) continues its progression towards a final specification. The Committee Draft of JPEG XL is being refined based on feedback received from experts from ISO/IEC national bodies. Experiments indicate the main two JPEG XL modes compare favorably with specialized responsive and lossless modes, enabling a simpler specification.

The JPEG committee has approved open-sourcing the JPEG XL software. JPEG XL will advance to the Draft International Standard stage in 2020-01.

JPEG AI

JPEG AI carried out rigorous subjective and objective evaluations of a number of promising learning-based image coding solutions from state of the art, which show the potential of these codecs for different rate-quality tradeoffs, in comparison to widely used anchors. Moreover, a wide set of objective metrics were evaluated for several types of image coding solutions.

JPEG exploration on Media Blockchain

Fake news, copyright violations, media forensics, privacy and security are emerging challenges in digital media. JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address these challenges in transparent and trustable media transactions. However, blockchain and DLT need to be integrated closely with a widely adopted standard to ensure broad interoperability of protected images. Therefore, the JPEG committee has organized several workshops to engage with the industry and help to identify use cases and requirements that will drive the standardization process. During the San Jose meeting, the committee drafted a first version of the use cases and requirements document. On the 21st of January 2020, during its 86th JPEG Meeting to be held in Sydney, Australia, JPEG plans to organize an interactive discussion session with stakeholders. Practical and registration information is available on the JPEG website. To keep informed and to get involved in this activity, interested parties are invited to register to the ad hoc group’s mailing list. (http://jpeg-blockchain-list.jpeg.org).

JPEG Systems interoperable 360 image standards released.

The ISO/IEC 19566-5 JUMBF and ISO/IEC 19566-6 JPEG 360 were published in July 2019.  These two standards work together to define basics for interoperability and lay the groundwork for future capabilities for richer interactions with still images as we add functionality to JUMBF (Part 5), Privacy & Security (Part 4), JPEG 360 (Part 6), and JLINK (Part 7). 

JPEG XS announces significant improvements of Bayer image sensor data compression.

JPEG XS aims at standardization of a visually lossless low-latency and lightweight compression that can be used as a mezzanine codec in various markets. Work has been done in the last meeting to enable JPEG XS for use in Bayer image sensor compression. Among the targeted use cases for Bayer image sensor compression, one can cite video transport over professional video links, real-time video storage in and outside of cameras, and data compression onboard of autonomous cars. The JPEG Committee also announces the final publication of JPEG XS Part-3 “Transport and Container Formats” as International Standard. This part enables storage of JPEG XS images in various formats. In addition, an effort is currently on its final way to specify RTP payload for JPEG XS, which will enable transport of JPEG XS in the SMPTE ST2110 framework.

“The 2019 Prime Time Engineering Award by the Academy is a well-deserved recognition for the Joint Photographic Experts Group members who initiated standardization of the first JPEG standard and to all experts of the JPEG committee who since then have extended and maintained it, guaranteeing its longevity. JPEG defined not only a great technology but also it was the first committee that defined how standardization should take place in order to become successful” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

The JPEG Committee nominally meets four times a year, in different world locations. The 84th JPEG Meeting was held on 13-19 July 2019, in Brussels, Belgium. The next 86th JPEG Meeting will be held on 18-24 January 2020, in Sydney, Australia.

More information about JPEG and its work is available at www.jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans (pr@jpeg.org) of the JPEG Communication Subgroup.

If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list on http://jpeg-news-list.jpeg.org.  

Future JPEG meetings are planned as follows:

  • No 86, Sydney, Australia, January 18 to 24, 2020
  • No 87, Erlangen, Germany, April 25 to 30, 2020

JPEG Column: 84th JPEG Meeting in Brussels, Belgium

The 84th JPEG meeting was held in Brussels, Belgium.

This meeting was characterised by significant progress in most of JPEG projects and also exploratory studies. JPEG XL, the new image coding system, has issued the Committee Draft, giving shape to this new effective solution for the future of image coding. JPEG Pleno, the standard for new imaging technologies, Part 1 (Framework) and Part 2 (Light field coding) have also reached Draft International Standard status.

Moreover, exploration studies are ongoing in the domain of media blockchain and on the application of learning solutions for image coding (JPEG AI). Both have triggered a number of activities providing new knowledge and opening new possibilities on the future use of these technologies in future JPEG standards.

The 84th JPEG meeting had the following highlights: 84th meetingTE-66694113_10156591758739370_4025463063158194176_n

  • JPEG XL issues the Committee Draft
  • JPEG Pleno Part 1 and 2 reaches Draft International Standard status
  • JPEG AI defines Common Test Conditions
  • JPEG exploration studies on Media Blockchain
  • JPEG Systems –JLINK working draft
  • JPEG XS

In the following, a short description of the most significant activities is presented.

 

JPEG XL

The JPEG XL Image Coding System (ISO/IEC 18181) has completed the Committee Draft of the standard. The new coding technique allows storage of high-quality images at one-third the size of the legacy JPEG format. Moreover, JPEG XL can losslessly transcode existing JPEG images to about 80% of their original size simplifying interoperability and accelerating wider deployment.

The JPEG XL reference software, ready for mobile and desktop deployments, will be available in Q4 2019. The current contributors have committed to releasing it publicly under a royalty-free and open source license.

 

JPEG Pleno

A significant milestone has been reached during this meeting: the Draft International Standard (DIS) for both JPEG Pleno Part 1 (Framework) and Part 2 (Light field coding) have been completed. A draft architecture of the Reference Software (Part 4) and developments plans have been also discussed and defined.

In addition, JPEG has completed an in-depth analysis of existing point cloud coding solutions and a new version of the use-cases and requirements document has been released reflecting the future role of JPEG Pleno in point cloud compression. A new set of Common Test Conditions has been released as a guideline for the testing and evaluation of point cloud coding solutions with both a best practice subjective testing protocol and a set of objective metrics.

JPEG Pleno holography activities had significant advances on the definition of use cases and requirements, and description of Common Test Conditions. New quality assessment methodologies for holographic data defined in the framework of a collaboration between JPEG and Qualinet were established. Moreover, JPEG Pleno continues collecting microscopic and tomographic holographic data.

 

JPEG AI

The JPEG Committee continues to carry out exploration studies with deep learning-based image compression solutions, typically with an auto-encoder architecture. The promise that these types of codecs hold, especially in terms of coding efficiency, will be evaluated with several studies. In this meeting, a Common Test Conditions was produced, which includes a plan for subjective and objective quality assessment experiments as well as coding pipelines for anchor and learning-based codecs. Moreover, a JPEG AI dataset was proposed and discussed, and a double stimulus impairment scale experiment (side-by-side) was performed with a mix of experts and non-experts in a controlled environment.

 

JPEG exploration on Media Blockchain

Fake news, copyright violation, media forensics, privacy and security are emerging challenges in digital media. JPEG has determined that blockchain and distributed ledger technologies (DLT) have great potential as a technology component to address these challenges in transparent and trustable media transactions. However, blockchain and DLT need to be integrated closely with a widely adopted standard to ensure broad interoperability of protected images. JPEG calls for industry participation to help define use cases and requirements that will drive the standardization process. In order to clearly identify the impact of blockchain and distributed ledger technologies on JPEG standards, the committee has organised several workshops to interact with stakeholders in the domain.

The 4th public workshop on media blockchain was organized in Brussels on Tuesday the 16th of July 2019 during the 84th ISO/IEC JTC 1/SC 29/WG1 (JPEG) Meeting. The presentations and program of the workshop are available on jpeg.org.

The JPEG Committee has issued an updated version of the white paper entitled “Towards a Standardized Framework for Media Blockchain” that elaborates on the initiative, exploring relevant standardization activities, industrial needs and use cases.

To keep informed and to get involved in this activity, interested parties are invited to register to the ad hoc group’s mailing list.

 

JPEG Systems – JLINK

At the 84th meeting, IS text reviews for ISO/IEC 19566-5 JUMBF and ISO/IEC 19566-6 JPEG 360 were completed; IS publication will be forthcoming.  Work began on adding functionality to JUMBF, Privacy & Security, and JPEG 360; and initial planning towards developing software implementation of these parts of JPEG Systems specification.  Work also began on the new ISO/IEC 19566-7 Linked media images (JLINK) with development of a working draft.

 

JPEG XS

The JPEG Committee is pleased to announce new Core Experiments and Exploration Studies on compression of raw image sensor data. The JPEG XS project aims at the standardization of a visually lossless low-latency and lightweight compression scheme that can be used as a mezzanine codec in various markets. Video transport over professional video links (SDI, IP, Ethernet), real-time video storage in and outside of cameras, memory buffers, machine vision systems, and data compression onboard of autonomous vehicles are among the targeted use cases for raw image sensor compression. This new work on raw sensor data will pave the way towards highly efficient close-to-sensor image compression workflows with JPEG XS.

 

Final Quote

“Completion of the Committee Draft of JPEG XL, the new standard for image coding is an important milestone. It is hoped that JPEG XL can become an excellent replacement of the widely used JPEG format which has been in service for more than 25 years.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

More information about JPEG and its work is available at www.jpeg.org.

Future JPEG meetings are planned as follows:

  • No 85, San Jose, California, U.S.A., November 2 to 8, 2019
  • No 86, Sydney, Australia, January 18 to 24, 2020

JPEG Column: 83rd JPEG Meeting in Geneva, Switzerland

The 83rd JPEG meeting was held in Geneva, Switzerland.

The meeting was very dense due to the multiple activities taking place. Beyond the multiple standardization activities, like the new JPEG XL, JPEG Pleno, JPEG XS, HTJ2K or JPEG Systems, the 83rd JPEG meeting had the report and discussion of a new exploration study on the use of learning based methods applied to image coding, and two successful workshops, namely on digital holography applications and systems and the 3rd on media blockchain technology.

The new exploration study on the use of learning based methods applied to image coding was initiated at the previous 82nd JPEG meeting in Lisbon, Portugal. The initial approach provided very promising results and might establish a new alternative for future image representations.

The workshop on digital holography applications and systems, revealed the state of the art on industry applications and current technical solutions. It covered applications such as holographic microscopy, tomography, printing and display. Moreover, insights were provided on state-of-the-art holographic coding technologies and quality assessment procedures. The workshop allowed a very fruitful exchange of ideas between the different invited parties and JPEG experts.

The 3rd workshop of a series organized around media blockchain technology, had several talks were academia and industry shared their views on this emerging solution. The workshop ended with a panel where multiple questions were further elaborated by different panelists, providing the ground to a better understanding of the possible role of blockchain in media technology for the near future.

Two new logos for JPEG Pleno and JPEG XL, were approved and released during the Geneva meeting.

jpegpleno-logo  jpegxl-logo

The two new logos, for JPEG Pleno and JPEG XL

The 83rd JPEG meeting had the following highlights: 55540677_10156332786204370_7011318091044880384_n_h

  • New explorations studies of JPEG AI
  • The new Image Coding System JPEG XL
  • JPEG Pleno
  • JPEG XS
  • HTJ2K
  • JPEG Media Blockchain Technology
  • JPEG Systems – Privacy, Security & IPR, JPSearch and JPEG in HEIF

In the following a short summary of the most relevant achievements of the 83rd meeting in Geneva, Switzerland, are presented.

 

JPEG AI

The JPEG Committee is pleased to announce that it has started exploration studies on the use of learning-based solutions for its standards.

In the last few years, several efficient learning-based image coding solutions have been proposed, mainly with improved neural network models. These advances exploit the availability of large image datasets and special hardware, such as the highly parallelizable graphic processing units (GPUs). Recognizing that this area has received many contributions recently and it is considered critical for the future of a rich multimedia ecosystem, JPEG has created the JPEG AI AhG group to study promising learning-based image codecs with a precise and well-defined quality evaluation methodology.

In this meeting, a taxonomy was proposed and available solutions from the literature were organized into different dimensions. Besides, a list of promising learning-based image compression implementations and potential datasets to be used in the future were gathered.

JPEG XL

The JPEG Committee continues to develop the JPEG XL Image Coding System, a standard for image coding that offers substantially better compression efficiency than relevant alternative image formats, along with features desirable for web distribution and efficient compression of high quality images.

Software for the JPEG XL verification model has been implemented. A series of experiments showed promising results for lossy, lossless and progressive coding. In particular, photos can be stored with significant savings in size compared to equivalent-quality JPEG files. Additionally, existing JPEG files can also be considerably reduced in size (for faster download) while retaining the ability to later reproduce the exact JPEG file. Moreover, lossless storage of images is possible with major savings in size compared to PNG. Further refinements to the software and experiments (including enhancement of existing JPEG files, and animations) will follow.

JPEG Pleno

The JPEG Committee has three activities in JPEG Pleno: Light Field, Point Cloud, and Holographic image coding. A generic box-based syntax has been defined that allows for signaling of these modalities, independently or composing a plenoptic scene represented by different modalities. The JPEG Pleno system also includes a reference grid system that supports the positioning of the respective modalities. The generic file format and reference grid system are defined in Part 1 of the standard, which is currently under development. Part 2 of the standard covers light field coding and supports two encoding mechanisms. The launch of specifications for point cloud and holographic content is under study by the JPEG committee.

JPEG XS

The JPEG committee is pleased to announce the creation of an Amendment to JPEG XS Core Coding System defining the use of the codec for raw image sensor data. The JPEG XS project aims at the standardization of a visually lossless low-latency and lightweight compression scheme that can be used as a mezzanine codec in various markets. Among the targeted use cases for raw image sensor compression, one can cite video transport over professional video links (SDI, IP, Ethernet), real-time video storage in and outside of cameras, memory buffers, machine vision systems, and data compression onboard of autonomous cars. One of the most important benefit of the JPEG XS codec is an end-to-end latency ranging from less than one line to a few lines of the image.

HTJ2K

The JPEG committee is pleased to announce a significant milestone, with ISO/IEC 15444-15 High-Throughput JPEG 2000 (HTJ2K) submitted to ISO for immediate publication as International Standard. HTJ2K opens the door to higher encoding and decoding throughput for applications where JPEG 2000 is used today.

The HTJ2K algorithm has demonstrated an average tenfold increase in encoding and decoding throughput compared to the algorithm currently defined by JPEG 2000 Part 1. This increase in throughput results in an average coding efficiency loss of 10% or less in comparison to the most efficient modes of the block coding algorithm in JPEG 2000 Part 1 and enables mathematically lossless transcoding to and from JPEG 2000 Part 1 codestreams.

JPEG Media Blockchain Technology

In order to clearly identify the impact of blockchain and distributed ledger technologies on JPEG standards, the committee has organized several workshops to interact with stakeholders in the domain. The programs and proceedings of these workshop are accessible on the JPEG website:

  1. 1st JPEG Workshop on Media Blockchain Proceedings, ISO/IEC JTC1/SC29/WG1, Vancouver, Canada, October 16th, 2018
  2. 2nd JPEG Workshop on Media Blockchain Proceedings, ISO/IEC JTC1/SC29/WG1, Lisbon, Portugal, January 22nd, 2019
  3. 3rd JPEG Workshop on Media Blockchain Proceedings, ISO/IEC JTC1/SC29/WG1, Geneva, Switzerland, March 20th, 2019

A 4th workshop is planned during the 84th JPEG meeting to be held in Brussels, Belgium on July 16th, 2019. The JPEG Committee invites experts to participate to this upcoming workshop.

JPEG Systems – Privacy, Security & IPR, JPSearch, and JPEG-in-HEIF.

At the 83rd meeting, JPEG Systems realized significant progress towards improving users’ privacy with the DIS text completion of ISO/IEC 19566-4 “Privacy, Security, and IPR Features” which will be released for ballot. JPEG Systems continued to progress on image search and retrieval with the FDIS text release of JPSearch ISO/IEC 24800 Part 2- 2nd edition. Finally, support for JPEG 2000, JPEG XR, and JPEG XS images encapsulated in ISO/IEC 15444-12 are progressing towards IS stage; this enables these JPEG images to be encapsulated in ISO base media file formats, such as ISO/IEC 23008-12 High efficiency file format (HEIF).

Final Quote

“Intelligent codecs might redesign the future of media compression. JPEG can accelerate this trend by producing the first AI based image coding standard.” said Prof. Touradj Ebrahimi, the Convenor of the JPEG Committee.

About JPEG

The Joint Photographic Experts Group (JPEG) is a Working Group of ISO/IEC, the International Organisation for Standardization / International Electrotechnical Commission, (ISO/IEC JTC 1/SC 29/WG 1) and of the International Telecommunication Union (ITU-T SG16), responsible for the popular JPEG, JPEG 2000, JPEG XR, JPSearch, JPEG XT and more recently, the JPEG XS, JPEG Systems, JPEG Pleno and JPEG XL families of imaging standards.

The JPEG Committee nominally meets four times a year, in different world locations. The 82nd JPEG Meeting was held on 19-25 January 2018, in Lisbon, Portugal. The next 84th JPEG Meeting will be held on 13-19 July 2019, in Brussels, Belgium.

More information about JPEG and its work is available at jpeg.org or by contacting Antonio Pinheiro or Frederik Temmermans of the JPEG Communication Subgroup.

If you would like to stay posted on JPEG activities, please subscribe to the jpeg-news mailing list.

Future JPEG meetings are planned as follows:

  • No 84, Brussels, Belgium, July 13 to 19, 2019
  • No 85, San Jose, California, U.S.A., November 2 to 8, 2019
  • No 86, Sydney, Australia, January 18 to 24, 2020